

Theme: Exploring What is Next in Neuroendovascular Surgery

DATE

2021. 6. 25 Fri ~ 26 Sat

VENUE

강릉 세인트존스호텔 그랜드볼룸

인사말

존경하는 대한뇌혈관내치료의학회 회원 여러분!

회원 여러분을 동해안의 아름다운 도시 강릉으로 초대합니다.

코로나 바이러스 재확산과 백신접종의 어려움이 지속되고는 있으나 의료인은 대부분 백 신접종을 시행하였기에 방역수칙을 준수하면서 ASCENT 2021을 개최하고자 합니다.

이번 학회의 테마는 "Exploring What is Next in Neuroendovascular Surgery"으로 정했습니다.

의학회에 가입한 다학제 학회로서 다양한 분야의 배경을 갖고 있는 회원들이 시행하고 있는 최신 연구에 대한 강의를 들을 수 있을 것이며, 최근 국내에 도입된 "WEB Intrasaccular Flow Disruptor"에 대한 해외의 경험과 기존 치료와의 차이를 조망해 보는 "Bifurcation Aneurysm Session"이 흥미로울 것입니다.

초청 강연은 "심미안" 책의 저자이신 윤광준 선생님을 모시고 "아름다움으로 채우는 일상" 이라는 주제로 우리의 삶을 다른 각도에서 되짚어보는 시간을 마련하였습니다. '뇌혈관 시술의'로 환자의 건강을 지키기 위해 헌신적인 삶을 살아가는 우리들에게 삶의 목적이 무엇인지, 행복이란 무엇인지를 '아름다움'이란 화두를 통해서 생각해 보는 유익한 시간이 될 것입니다.

우리 학회의 저변을 확대하기 위해 혈관내 치료의 가장 기본인 대퇴동맥 천자에서부터 다양한 혈관내 접근 방법에 이르기까지 기본에 대한 미니 심포지엄을 준비하였습니다. 이와 함께 새로이 입문하는 초심자를 위한 "Basic Endovascular Training Course"에 서는 경동맥 협착에 대한 스텐트 시술에 초점을 맞추어 강의와 워크샵을 준비하였으니 관심있는 회원 여러분께서는 여러 회사의 스텐트를 직접 설치해 볼 수 있을 것입니다.

마지막으로 코로나-19 재확산으로 인해 어려운 상황에서도 학술대회를 준비하느라 수고해 주신 임원 여러분께 감사드리며, 항상 우리 학회에 관심을 갖고 후원에 주시는 기업 관계자 여러분께도 감사의 인사를 드립니다.

모쪼록 건강에 유의하시고 건강한 모습으로 강릉에서 뵙기를 고대합니다.

감사합니다.

2020~2021 대한뇌혈관내치료의학회 임원진

명예회장

직 위	성 명	소속
명예회장	백민우	인봉의료재단 뉴고려병원
	권도훈	울산대학교 서울아산병원

회장

직 위	성 명	소속
회장	윤석만	순천향대학교 천안병원

상임이사

9 D 4 M		
직 위	성 명	소속
총무	박석규	순천향대학교 서울병원
학술	권순찬	울산대학교병원
	 신승훈	차의과학대학교 분당차병원
재무	 김영우	기톨릭대학교 의정부성모병원
	 유승훈	울산대학교 강릉이산병원
수련교육	 김태곤	차의과학대학교 분당차병원
 간행	 하성곤	고려대학교 안산병원
	 권현조	충남대학교병원
<u></u> 보험	 정준호	연세대학교 세브란스병원
	<u> </u>	순천향대학교 서울병원
대외협력	 김성림	가톨릭대학교 부천성모병원
국제교류	 정진영	연세에스병원
법제윤리	 고준경	부산대학교병원
홍보	 신희섭	강동경희대학교병원
71170	 장경술	가톨릭대학교 인천성모병원
전산정보	신동성	순천향대학교 부천병원
회원관리	장인복	한림대학교 평촌성심병원
지크기치	남택균	중앙대학교병원
진료지침	최재형	동아대학교병원
연보 · 학회사편찬	임용철	아주대학교병원
진료심의	박중철	울산대학교 서울이산병원
전문병원	김문철	에스포항병원
인正경전	허준	명지성모병원
학술지편집	김대원	원광대학교병원
인증관리	이호국	한림대학교 강남성심병원
다기관임상	김범태	순천향대학교 부천병원
미래전략	권오기	분당서울대학교병원
국제학술대회	신용삼	가톨릭대학교 서울성모병원
의학회	장철훈	영남대학교병원
여의사위원회	심숙영	인제대학교 서울백병원
심뇌혈관질환정책	윤창환	분당서울대학교병원 순환기내과
뇌신경마취	전영태	분당서울대학교병원 마취통증의학과
의료기기연구	양수근	인하대학교 의과대학 의생명학과
뇌신경재활	김수아	순천향대학교 천안병원 재활의학과
다학제연구	이학승	원광대학교병원 신경과
다학제연구	정용안	가톨릭대학교 인천성모병원 핵의학과
다학제연구	이아름	순천향대락교 부천병원 영상의학과
1 1 1 1 1	- 1*1	1 220 11 1 1 202 00 1 1 1

2020~2021 대한뇌혈관내치료의학회 임원진

직 위	성 명	소속
광주/전라지회	김대원	원광대학교병원
대구/경북지회	장철훈	영남대학교병원
대전/충청지회	권현조	충남대학교병원
부산/울산/경남지회	정진영	연세에스병원
인천지회	현동근	인하대학교병원
7111	고정호	단국대학교병원
감사	이종영	한림대학교 강동성심병원
간사	오재상	순천향대학교 천안병원

전임회장단

직 위	성 명	소속
초대, 제2대	백민우	인봉의료재단 뉴고려병원
제3대	김영준	오산한국병원
제4, 5대	권도훈	울산대학교 서울아산병원
제6대	안성기(작고)	(전) 한림대학교 성심병원
제7대	신용삼	가톨릭대학교 서울성모병원
제8대	권오기	분당서울대학교병원
제9대	김범태	순천향대학교 부천병원
제10대	성재훈	가톨릭대학교 성빈센트병원
제11대	고준석	강동경희대학교병원

정용안

가톨릭대학교 방사선과학교실 핵의학과 교수 인천성모병원 뇌과학중개연구소장

학력	2004	가톨릭대학교 의과대학원 석박사
74.24	2001 2002	
경력	2001-2002	가톨릭대학교 강남성모병원 핵의학과 임상강사
	2002-2004	가톨릭대학교 성모병원 핵의학과 전임강사
	2006-2007	Visiting Assistant Professor, Brain Imaging LAB, New York State Psychiatric
		Institute & Columbia University
	2004-2008	가톨릭대학교 의과대학 방사선과학교실 조교수
	2008-2013	가톨릭대학교 의과대학 방사선과학교실 부교수
	2013-현재	가톨릭대학교 의과대학 방사선과학교실 교수
연구비 수혜실적	2012-2019	교육과학기술부 글로벌프론티어사업 실감교류 인체감응솔루션연구단
	2009-2015	교육과학기술부 신기술융합형성장동력사업 첨단의료기기사업본부장, 미래기반기술
		개발사업
	2002-2009	과학기술부 원자력기술개발과제 방사선뇌과학연구비

이 **종 하** 계명대학교 의과대학 의용공학과

학력	2000 2006	인하대학교 전자공학과 학사 New York University, Tandon School of Engineering, Electrical Engineering 석사
	2011	Temple University, Electrical Engineering 박사
경력	2000-2002 2009. 5-9 2004-2005	J.T. Corp (병역특례), 소프트웨어 엔지니어 삼성전자 종합기술원, Future IT Research Lab, 해외 우수 박사 유학생 인턴 The Center for Advanced Technology in Telecommunications and Distributed Information Systems, New York (뉴욕 CATT 연구소), 연구원
	2006-2011	Control, Sensor, Network, and Perception (CSNAP) Lab, Temple University, 연구원
	2011-2012	삼성전자 종합기술원, Future IT Research Lab, Data Analytics group, 전문연구원

김 수 아 순천향대학교 천안병원 재활의학과

학력 1997 순천향대학교 의과대학 졸

2009 순천향대학교 대학원(박사)

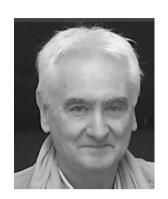
경력 2018-현재 순천향대학교 부속 천안병원 교수

2006.06-2007.05 Schwab rehabilitation hospital at Chicago 연수

2014-현재 순천향대학교 부속 천안병원 재활의학과 과장

소아재활 2,3판 공동저술

윤 광 준 작가



글과 사진 영역을 넘나드는 작가로 열여섯 권의 책을 냈고 세 번의 사진전을 열었다. 대표작인 잘 찍은 사진 한 장, 생활명품, 심미안 수업, 내가 사랑한 공간들은 베스트 셀러다.

일상의 삶을 예술로 채우자는 지론으로 음악과 미술 건축 디자인에 관심 높다. 이들 분야의 연결과 협업을 이끄는 아트 워커로 활동한다. EBS를 비롯해 SBS, MBC TV에 출연했으며 중앙일보와 농민신문에고정 컬럼을 연재 중이다.

Jacques Moret

Department of Interventional Neuroradiology, Bicêtre University Hospital, France

Professional	1975	Medical Doctor
Situation	1974-1977	Fellowship in Radiology
	1975	Fellow, Department of Neuroradiology, Loma Linda University, USA
	1977	Board of Radiology, René Descartes University, Paris, France
	1993	Habilitation to Conduct Researches (HDR)
	1989-1994	Full Professor of Radiology, Baylor College Of Medicine, Houston, Texas, USA
	1994-2010	Former Chairman, Department of Interventional Neuroradiology, at The
		Foundation Rothschild Hospital, Paris, France
	2011-2015	Former Chairman, Department of Interventional Neuroradiology, At
		Beaujon University Hospital Clichy, Paris, France
	2015-Presen	t Honorary Chairman Department Of Interventional Neuroradiology At
		Bicêtre University Hospital Le Kremlin Bicêtre, Paris, France
		Professor of Neuroradiology, University Paris VII, Faculty Of Medicine
		"Bichat-Beaujon", Paris, France

Medical Societies

Member of The "Societe Française de Neuroradiologie"

Member (Former) of The "European Society of Neuroradiology" Member (Former) of The "The American Society of Neuroradiology"

Member of the ESMINT "European Society of Minimally Invasive Neurological Therapy" Founding Member of the "ABC-W.I.N." (Working Group In Interventional Neuroradiology) Member (Former) of the "Cardiovascular and Interventional Radiological Society of Europe"

Member of the "Societe de Neurochirurgie de Langue Francaise"

Member (Former) of the "Societe de Chirurgie Vasculaire de Langue Francaise" Member of "World Federation of Interventional and Therapeutic Neuroradiology"

프로그램

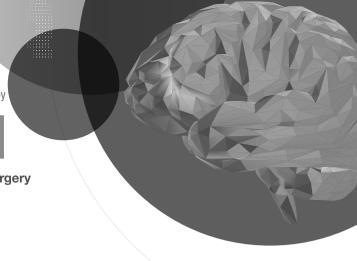
6 / **25** Fri

09:00-12:00	Workshop for review board of HIRA service /장소: 바부다홀	좌장_ 권오기(서울대) / 박석규(순천향대)	
09:00-09:45	1. 심사체계 개편의 방향과 자율형 심사	박영희(건강보험심사평가원)	17
09:45-10:30	2. 뇌혈관내치료 심사의 기본	권오기(서울대)	18
10:30-11:15	3. 뇌혈관내치료 심사의 실제 및 제언 (I)	권현조(충남대)	19
11:15-12:00	4. 뇌혈관내치료 심사의 실제 및 제언 (II)	최재형(동아대)	20
11:00-12:00	Registration		
12:00-13:00	Mini-symposium for navigation to target vessels	좌장_ 임용철(아주대) / 이종영(한림대)	
	1. Trans-femoral approach	김명진(가천대)	27
	2. Trans-brachial approach	박상규(연세대)	29
	3. Direct carotid / vertebral approach	신동성(순천향대)	37
	4. Guiding technique for endovascular surgery	김성태(인제대)	43
13:20-13:30	Opening remark	윤석만(대한뇌혈관내치료의학회 회장)	
	Welcome remark	이일우(대한신경외과학회 회장)	
13:30-14:40	Free paper I : Ecstasy session (Troubleshooting for difficult cases)	좌장_ 이호국(한림대) / 고준석(경희대)	
13:30-13:40	Distinguishment the ruptured aneurysm at multiple aneurysm	배희진(명지병원)	53
13:40-13:50	SAH and dissecting aneurysm of ophthalmic artery	김소연(가톨릭관동대학교 국제성모병원)	54
	Treatment of symptomatic partially thrombosed giant fusiform aneurysm o	,,	04
13:50-14:00		김재현(계명대학교 동산병원)	55
14:00-14:10	Successful rescue from desperate complication; retrieving damaged stent a migrated coil with another retrievable stent - A case report	and 박성찬(울산대학교병원)	56
14:10-14:20	Onyx embolization of dural AVF in the superior sagittal sinus region using e compression and direct open access: A case report	xternal 장동규(가톨릭대학교 인천성모병원)	57
14:20-14:30	Use of a rigid-tipped microwire for the endovascular treatment of cavernou dural arteriovenous fistula with a membranous stricture	s sinus 박중철(울산대학교 서울이산병원)	58
14:30-14:40	Treatment of symptomatic tandem BA & V4 severe stenosis	박현욱(부산부민병원)	59
14:40-15:40	Symposium I : Interdisciplinary session 좌장_ 김병	범태(순천향대) / 양수근(인하대 의생명학과)	
	1. Neurostimulation & clinical application	정용안(가톨릭대 핵의학과)	63
	2. The Computer Aided Diagnostics Algorithm and Intracranial Applicable Catheter of Intravascular OCT	이종하(계명대 의용공학과)	69
	3. Stroke rehabilitation at present, and in the future	김수아(순천향대 재활의학과)	76
15:40-16:00	Photo time & Coffee break		
16:00-16:40	인문학 특강	좌장_ 윤석만(순천향대)	
	아름다움으로 채우는 일상	윤광준 (작가)	83
16:40-16:50	Transfer		
16:50-18:00	Free paper II : Agony Session (Complication cases)	좌장_ 김태선(전남대) / 장철훈(영남대)	
16:50-17:00	Fatal complication of procedural rupture in unruptured cerebral aneurysm	진성철(인제대학교 해운대백병원)	87
17:00-17:10	A case of delayed rebleeding following ruptured anterior communicating ar aneurysm embolization		88

17:10-17:20	Delayed rebleeding from ruptured broad-neck posterior communicating and double-stent assisted coil embolization	rtery aneurysm after 정연구(성균관대학교 강북삼성병원)	89
17:20-17:30	A case of segment occlusion after treatment with a pipeline endovascular dissecting aneurysm on dominant VA	device in 김창현(양산부산대학교병원)	90
17:30-17:40	Direct carotid cavernous fistula after pipeline implantation for a symptoma cavernous internal carotid artery aneurysm	atic large 반승필(분당서울대학교병원)	91
17:40-17:50	Superior sagittal sinus occlusion due to probable thrombocytopenic throm after AstraZeneca COVID-19 Vaccination	bosis 최선웅(가톨릭대학교 부천성모병원)	92
17:50-18:00	Acute management of latrogenic vertebral artery dissection during treatm proximal vertebral artery stenosis	ent of 하상우(조선대학교병원)	93
16:50-17:50	Satellite symposium for nurses and technicians / 장소: 바부다홀	좌장_ 김태곤(차의과학대) / 심숙영(인제대)	
	1. Natural history and treatment guidelines of cerebral aneurysm	오세양(인하대)	97
	2. Endovascular treatment of cerebral aneurysm	김대원(원광대)	106
	3. Perioperative care of cerebral aneurysm	고정호(단국대)	114
18:00-18:20	General Assembly of KoNES	박석규(대한뇌혈관내치료의학회 총무이사)	
18:30-20:30	만찬	신희섭(대한뇌혈관내치료의학회 홍보이사)	

6 / **26** Sat

09:00-12:00	Basic endovascular training course	좌장_ 유승훈(울산대) / 장인복(한림대)	
	1. Imaging of carotid stenosis	이아름(순천향대 영상의학과)	127
	2. Review of devices	윤원기(고려대)	140
	3. Patent selection, technical tips and basic tactics	신병국(동의의료원)	157
	4. Escape from complicated situation	김영우(가톨릭대)	161
	5. Hands-on		
12:30-13:30	Luncheon seminar	좌장_ 이창영(계명대) / 김문철(에스포항병원)	
	1. Role of direct thrombin inhibitor for acute ischemic stroke	정진영(연세에스병원)	173
	2. Safety and feasibility of using Argatroban	이동훈(가톨릭대)	181
13:30-14:50	Free paper III : Early experiences by young gun in EVT	좌장_ 성재훈(가톨릭대) / 신승훈(차의과학대)	
13:30-13:40	Complications and solutions in treating cerebral arteriovenous malforma materials; Beginner's personal experience	tion with liquid-embolic 조동영(이화여자대학교 서울병원)	185
13:40-13:50	Contrast neurotoxicity after coil embolization for cerebral unruptured an subarachnoid hemorrhage	eurysm mimicking 김학성(중앙보훈병원)	186
13:50-14:00	Intractable seizure after endovascular coil embolization of unruptured paraneurysm	raclinoid 윤별희(의정부을지대학교병원)	187
14:00-14:10	Framing coil total prolapse due to stretched coil stuck in a microcatheter	정동환(한림대학교 동탄성심병원)	188
14:10-14:20	First voyage as a neurosurgery vascular surgeon	박재원(천안충무병원)	189
14:20-14:30	The use of contralateral angioplasty to improve collateral flow in case of initial EVT position	difficulty in 최연주(에스포항병원)	190
14:30-14:40	Early-visit patients with poor clinical outcomes after successful recanalize multiple retrieval attempts	ation with 김승환(성균관대학교 삼성창원병원)	191
14:40-14:50	Safety and efficacy of mechanical thrombectomy using balloon-expandable deployment as a rescue therapy after failed stent retriever thrombectomy young gun in EVT (Case report)		192


14:50-15:20	Introduction of new endovascular devices by company	좌장_ 정준호(대한뇌혈관내치료의학회 보험이사)
15:20-15:40	Coffee break	
15:40-17:20	Symposium II : Bifurcation aneurysm from clipping/coiling to flow modulation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($	좌장_ 신용삼(가톨릭대) / 권순찬(울산대)
15:40-16:00	1. Why clipping for bifurcation aneurysm	하성곤(고려대) 197
16:00-16:20	2. Why coiling for bifurcation aneurysm	박정현(한림대) 206
16:20-16:40	3. Benefit of flow disruptor on bifurcation aneurysm	신용삼(가톨릭대) 207
16:40-17:20	4. Update and review for flow disruptor on bifurcation aneurysm	Jacques Moret (NEURI center, Bicêtre 208 University Hospital, France)
17:20-17:40	학술상 시상 <i>& Closing remark</i>	

Poster Session

부천병원) 211
- /
천안병원) 212
동산병원) 213
서울병원) 214
학교병원) 215
세림병원) 216
제생병원) 217
학교병원) 218
목동병원) 219
성모병원) 220
성모병원) 221
학교병원) 222
리놀병원) 223
부민병원) 224
포항병원) 225

Theme: Exploring What is Next in Neuroendovascular Surgery

6/25(Fri.)

Workshop for review board of HIRA service

좌장: 권오기(서울대) / 박석규(순천향대)

1. 심사체계 개편의 방향과 자율형 심사

2. 뇌혈관내치료 심사의 기본

3. 뇌혈관내치료 심사의 실제 및 제언 (1)

4. 뇌혈관내치료 심사의 실제 및 제언 (॥)

박영희(건강보험심사평가원)

권오기(서울대)

권현조(충남대)

최재형(동아대)

심사체계 개편의 방향과 자율형 심사

박 영 희

건강보험심사평가원

	 	_
		-

뇌혈관내치료 심사의 기본

권오기

분당서울대학교병원 신경외과

		·····
		·····
	 	·····
		·····
		·····
		·····
		·····
		·····
		<u>.</u>
		······
		······

뇌혈관내치료 심사의 실제 및 제언 (I)

권 현 조

충남대학교병원 신경외과

······
<u>.</u>
_
_

뇌혈관내치료 심사의 실제 및 제언 (II)

최재형¹, 이재일²

동아대학교병원 신경외과¹, 부산대학교병원 신경외과²

뇌혈관내 치료의 심사기준 (II)

동아대 병원 최재형, 부산대 병원 이재일

연번	제목
1	Detachable coil의 급여기준
2	뇌혈관의 중재적 시술 시 사용하는 Distal Access Intermediate Catheter(원 위 접근용 중간도관) 급여기준
3	경피적 두개강내 동맥 스텐트 삽입술 시 스텐트의 급여기준
4	경피적 두개강외 동맥스텐트 삽입술 시 스텐트의 급여기준
5	뇌동맥류 코일이탈방지용 스텐트의 급여기준
6	액체형 색전물질(뇌혈관용)의 급여기준
7	기계적 혈전제거술용 치료재료 (회수성 Stent, 흡인성 Catheter)의 급여기준
8	뇌혈관내 홈인기구를 이용한 혈전제거술[penumbra system]Thrombectomy using aspiration device in intracranial vessel[penumbra system]
9	뇌동정맥기형적출술 시 사용하는 AVM (Arterio-Venous Malformation) Microclip의 급여기준
10	뇌동맥류수술시 클립(Clip) 종류별 산정기준
11	Flow-diverter를 이용한 뇌동맥류 색전술용 색전 기구(Embolization Device)의 급여기준
12	Flow-diverter를 이용한 뇌동맥류 색전술 Intracranial Aneurysms

Intra-cranial stenosis

 \rightarrow balloon angioplasty & stenting

Carotid stenosis

→ Extra-cranial stenting (carotid stenting)

AVM/CCF/Dural AVF

Acute ischemic stroke

→ Mechanical thrombectomy

→ Embolization with Coil and Liquid material

경피적 풍선혈관 성형술 (Percutaneous Transluminal Angioplasty)

• 행위 정의

뇌혈관 협착 부위에 경피적으로 풍선을 확장시켜 혈관을 성형하는 수술

- 경동맥 (추골동맥 포함)

- 1) 뇌혈관내 동맥, 경동맥, 추골동맥 **협착에 의한 뇌관류 장애**
- 2) 경동맥, 추골동맥 협착에 의한 뇌동맥 색전의 병력 또는 검사상의 증거
- 3) 경동맥 또는 추골동맥 **박리에 의한 진행성 혈관협착 또는 파열**
- 4) 혈전에 의한 경동맥 협착, 폐색

경피적 풍선혈관 성형술 (Percutaneous Transluminal Angioplasty)

고시 제2018-185호(행위), 2018.11.01 시행

- 세부인정 사항
 - 가. **내경 70% 이상의 협착이 있는 경우**
 - 나, 협착부위 근위부와 원위부의 수축기 혈압의 차이
 - 1) 안정기에 혈압차 10mmHg 이상
 - 2) 혈관 확장제 투여 후 15mmHg(또는 15%) 이상 차이가 있는 경우
- 경피적풍선혁과 성형숙(PTA) 시 실패한 경우의 수가 산정방법

경피적 풍선혈관 성형술 (PTA) 시 Guiding Catheter 와 Guide Wire 가 **병소를 통과하지 못한 경우의 수가 산정 방법은 경피적 풍선혈관 성형술 (PTA)** 소정점수 50%로 산정함 (주수술인 경우 주수술 소정점수의 50%, 부수술인 경우 부수술 소정점수의 50%)

경피적 혈관내 금속 스텐트 삽입술 (Percutaneous intravascular installation of metallic stent)

- 주: 1) 경**피적 풍선혈관 성형술(PTA)과 동시에 시술한 경우**에는 경피적 **풍선혈관 성형술의 수기료는 산정하지 아니한다**
 - 2) 실패로 인하여 관혈적 수술을 행한 경우에는 방사선 진단에 소요된 비용과 동 시술 시 사용된 재료대만을 산정한다
 - 3) Stent, Balloon Catheter (Bare형 Stent 사용 시), Introducer, G-wire, 조영제 필름 재료대는 별도 산정하다
 - 가. 뇌혈관
 - 나. 경동맥 (추골동맥 포함): Carotid

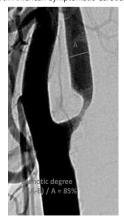
Intracranial artery stenting 고시 제2019-131호(행위), 2019.08.01 시행

두개강내 동맥(intracranial artery)에 삽입하는 스텐트는 다음의 경우에 요양급여를 인정함

- 1. 유증상의 70% 이상 두개강내 대혈관
 - (내경동맥(internal carotid artery), 중대뇌동맥(middle cerebral artery), 척추동맥(vertebral artery), 기저동맥(basilar artery)) 협착 시
 - → 6개월 이상 항혈소판제 및 항고지혈증 약물을 투여하였음에도 혈관 협착에 의해 증상성 뇌경색이 발생한 경우

(다만, 집중적인(intensive) 약물치료에도 증상이나 병변 재발이 있는 경우에는 6개월 이내시행에도 사례별로 인정함).

- 2. 혈관박리가 있는 경우
- 3. 두개내 혈관 폐색으로 인한 급성 허혈 뇌졸중 환자에서 기계적 혈전제거술을 시행한 이후에 도 혈관현착이 70% 이상 남아 혈류 역한적으로 폐색의 가능성이 높다고 판단되는 경우


Extracranial artery stenting 고시 제2019-131호(행위), 2019.08.01 시행

- 세부인정 사항
 - 가. 두개강외 경동맥 (NASCET 기준)
 - 1) **유증상의 50%** 이상 경동맥 협착
 - 2) **무증상의 70%** 이상 경동맥 협착
 - 단, 관류영상 검사 상 관류 저하가 확인된 경우(CTP,MRP,SPECT)
 - 3) 기타 (증상 또는 협착의 정도와 관계없이 시행 가능한 경우)
 - 가. 반대측 경동맥 폐색을 동반한 50% 이상의 경동맥 협착
 - 나. 가성동맥류(pseudoaneurysm)
 - 다. 동정맥루 치료를 위해 다른 방법이 가능하지 않은 경우
 - 라. 혈관박리로 인한 혈류 감소 또는 협착
 - 나. 두개강외 척추동맥(extracranial vertebral artery)
 - 1) **유증상의 70%** 이상 척추동맥 협착
 - 2) 척추동맥 박리로 혈류 감소 또는 출혈의 위험이 있는 경우 등

Extracranial artery stenting (II) 고시 제2019-131호(행위), 2019.08.01 시행

- # '유증상' 범위 : 최근 6개월 이내 협착 영역에 **일과성 허혈발작이나 뇌경색**이 있었던 두개강외 경동맥 또는 척추동맥 협착
- # 일과성 허혈발작: 일시적 편측마비, 편측 시야마비, 실어증 또는 이에 준하는 증상 등으로 단순한 어지럼증은 해당 안 됨.
- 2 근여개수
- 스텐트는 **한 병변 당 1개 사용을 원칙**으로 함.
- 다만, 스텐트의 길이를 초과하는 병변,
 - 병변의 시술 전 후 혈관박리 시,
 - -혈관내 치료가 필요한 다발병소(tandem lesion),
 - -굴곡이 심한 혈관 등과 같이

인정개수 이외 추가사용이 불가피한 경우에는 병변 당 1개를 추가하여 최대 2개 까지 요양급여를 인정함 # NASCET: North American Symptomatic Carotid Endarterectomy Trial

Mechanical thrombectomy 고시 제2019-131호(치료재료), 2019,08.01 시행

1. 두개내 대형혈관의 기계적 혈전제거술용 치료재료(회수성 stent, 흡인성 catheter) 는 다음의 경우에 요양급여를 인정함

가. 회수성 stent

- 1) 급여대상
 - 가) 두개내 대형 혈관(두개강외 경부혈관 포함)의 폐색 질병으로 인한 급성 허 형 뇌족중으로
 - (1) 증상발생 8시간 이내의 환자
 - (2) 증상발생 3시간 이내의 환자는 정맥내 혈전용해술이 실패하거나 이에 대한 금기증에 해당하는 환자 (?)
 - # 회수성 stent의 혈관범위 : 내경동맥부터 후대뇌동맥까지 모두 해당됨
- 2. 상기 1항의 급여대상에도 불구하고 아래의 경우는 요양급여 대상에서 제외함
 - 가. Non-contrast CT상 중대뇌동맥 영역 1/3이상을 침범한 뇌경색
 - 나. 심한 뇌부종
 - 다. 뇌출혈

Mechanical thrombectomy (Onset 8-24hr)

두개내 내경동맥 또는 중대뇌동맥의 페색 질병으로 인한 급성 허혈 뇌졸중에서, 증상발생 8시간에서 24시간이내의 환자는 영상검사 결과 뇌경색이 크기가 한쪽 대뇌반구의 1/5 이하이면서 아래 조건 중 한 가지를 만족하는 경우

- (1) 초기 신경학적 결손이 NIHSS 점수 6점 이상~10점 미만이면서, 뇌관류영상
- 에서 <u>관류-뇌경색 불일치의 비율이 1.8이상 또는 불일치의 부피가 15ml 이상</u>
- (2) 초기 신경학적 결손이 NIHSS 점수 10점 이상
- 증상발생 8시간에서 24시간이내의 환자
 - # "영상검사 결과 뇌경색의 크기가 한쪽 뇌반구 1/5 이하"는 다음과 같음
 - 1. 확산강조 MRI 에서 100ml 이하
 - 2. 확산강조 MRI 에서 MR-ASPECTS 6점 이상
 - 3. 비조영 뇌CT애서 CT-ASPECTS 6점 이상

Mechanical thrombectomy

2) 혈관 인정범위

가) 내경동맥 (internal carotid artery)

나) 중대뇌동맥(middle cerebra artery) 의 첫번째 (MCA M1 segmemt)와

두 번째 부위(MCA M2 segment)

- 다) 기저동맥(basilar artery)
- 라) 척추동맥(vertebral artery)
- 마) 전대뇌동맥(anterior cerebral artery)
- 바)후대뇌동맥(posterior cerebral artery)

나. 흡인성 catheter

- 1) 급여대상
- 가. 회수성 stent의 1)급여대상 가)와 동일
- 2) 혈관인정범위
- 가. 회수성 stent의 2)혈관인정범위 가)~라)와 동일

다. 급여개수 (stent and aspiration catheter)

재료 종류에 관계없이 1개 인정하는 것을 원칙으로 하되, 혈관폐색 부위의 개통 실패 사유가 영상자료에서 확인된 경우 1개를 추가 인정함

뇌혈관내 흡인기구를 이용한 혈전제거술 (Penumbra system)

Thrombectomy using aspiration device intracranial vessel (penumbra system) 고시 제2017-118호(기결정), 2017.1.1 시행

자633나 경피적혈전제거술-기계적혈전제거술(카테터법)의 소정점수를 산정함.

다만, **기계적 혈전제거술용 치료재료 급여기준에 적합한 경우**만 산정함.

뇌혈관의 중재적 시술 시 사용하는 Distal Access Intermediate Catheter (원위 접근용 중간도관)의 급여기준 교시제2019-131호(치료제료), 2019 08.01 시행

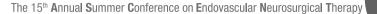
Distal Access Intermediate Catheter 는 뇌혈관의 중재적 시술 시 뇌혈관 또는 대동맥의 적임과 굴곡이 심하거나, 혈관 근위부의 지지가 약하고 불안정하여 카테터의 진입이 어려운 경우 1개를 요양 급여로 인정함. (적응증 제한 없음)

Easy distal navigation of distal access guiding catheter

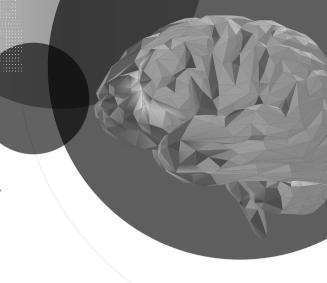
: Navien, Envoy DA, Sofia, Catalyst etc.

Workshop for review board of HIRA service

액체형 색전물질(뇌혈관용)의 급여기준 고시 제2018-254호(행위), 2019.01.01 시행


액체형 색전물질(뇌혈관용)은 혈관색전술 시 사용하는 치료재료로, 다음의 경우에 요양급여함.

가. 급여대상


- 1) 뇌동정맥기형(뇌경막동정맥루 포함)
- 2) 과혈관성 뇌종양(단순 meningioma 제외)
- 3) 다른 색전물질로 효과적으로 치료되지 않는 뇌혈관 파열에 사례별로 인정

나. 급여개수: **6개**

단, 급여개수를 초과하여 사용한 경우에는 관련자료(영상자료 등)를 참조하여 사례별로 인정

Theme: Exploring What is Next in Neuroendovascular Surgery

6/25(Fri.)

Mini-symposium for navigation to target vessels

좌장: 임용철(아주대), 이종영(한림대)

1. Trans-femoral approach 김명진(가천대)

2. Trans-brachial approach 박상규(연세대)

3. Direct carotid / vertebral approach 신동성(순천향대)

4. Guiding technique for endovascular surgery 김성태(인제대)

Trans-femoral approach

김명진

가천대학교 길병원 신경외과

At present the transfemoral approach (TFA) is the most commonly used approach for endovascular treatment in cerebrovascular diseases worldwide. In terms of treatment modality, the TFA provides many advantages described below*.

*The advantages of the TFA

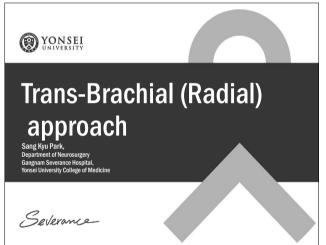
- 1. almost possible introducing larger bore sheath and catheter than other access routes such as radial
- 2. immediately implementable endovascular procedure after the diagnostic angiography
- 3. more robust and straight proximal supporting
- 4. easier and more accustomed access than other sites such as radial, brachial, and carotid artery
- 5. more feasible manipulation of the closing device
- 6. simultaneously bilateral approach using right and left ilio-femoral arteries
- 7. simultaneously trans-arterial and trans-venous approaches

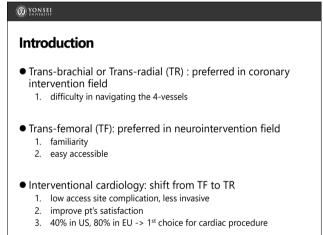
Although the TFA remains as the first option in most cases nowadays, some challengeable cases** might give us serious concerns about how overcome the pathway to target vessels in order.

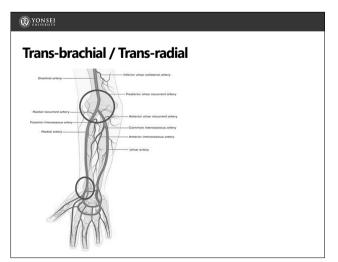
- **The challengeable pathways to the target vessels in the TFA
 - 1. occlusion or severe stenosis of the femoral arteries
 - 2. severe tortuous and atherosclerotic ilio-femoral arteries
 - 3. aneurysmal dilatation or scoliotic tortuosity of thoraco-abdominal aorta
 - 4. aberrant pathway of aortic arch and thoraco-abdominal aorta
 - 5. calcified and acute angled aortic arch in elderly patients

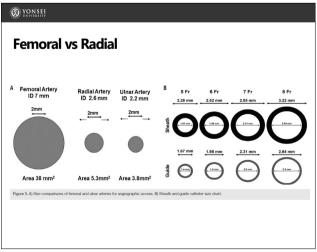
In these cases, further procedure may take a longer time than expected or finally it may fail. First of all, the wire should be handled and advanced meticulously prior to be followed by the catheter involving guiding system. If needed, more stiff wire may be helpful in terms of supporting and advancing the catheter through severe tortuous or acute angled vessels.

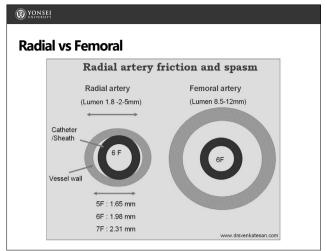
When it comes to most dangerous and unthoughtful situation even though overcoming the crisis, whole

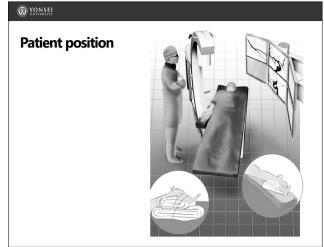

instruments system can be pulled back abruptly during the procedure, which might result in critical situation. That is because it is not enough proximal supporting. Therefore, it is very important to set more flexi-rigid guiding up such as multi-axial guiding method.

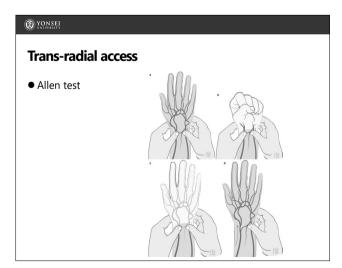

Alternative access routes such as transradial, transbrachial, and direct carotid approaches are of interest when the iliofemoral arteries are diseased, highly calcified or extremely tortuous.

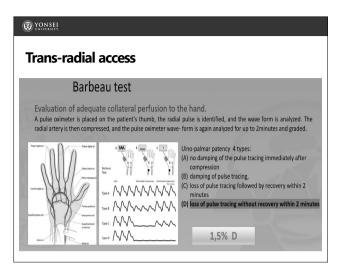

Trans-brachial approach

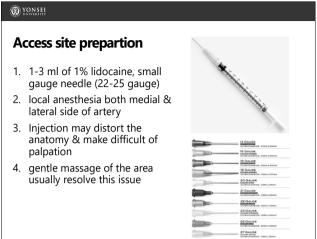

박상규

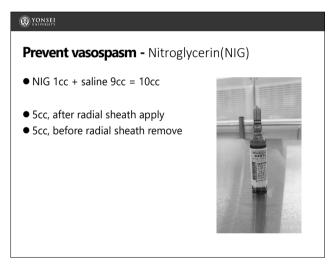

연세대학교 강남세브란스병원 신경외과

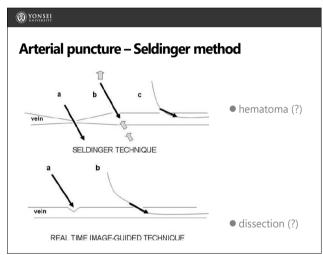


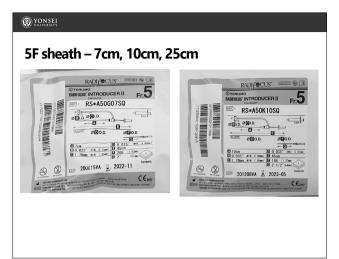


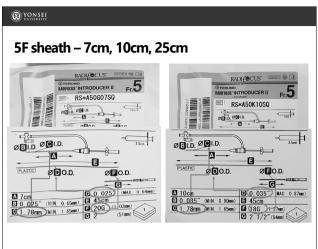


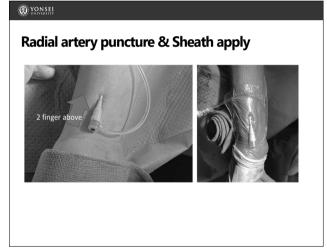


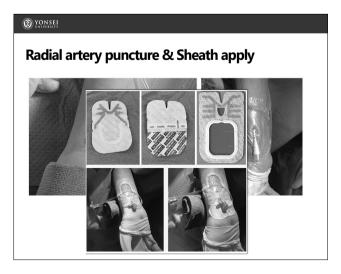


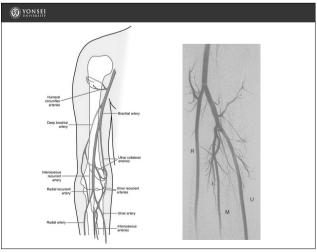


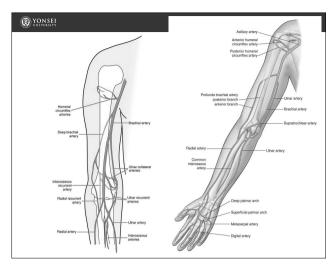


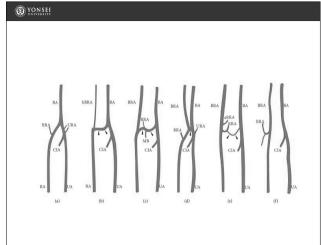




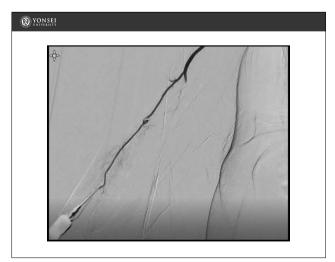


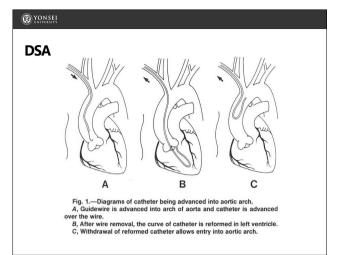


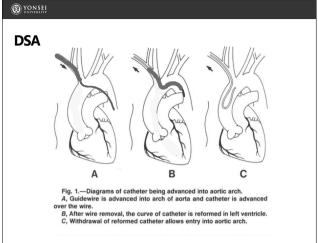


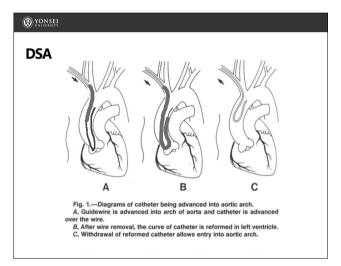


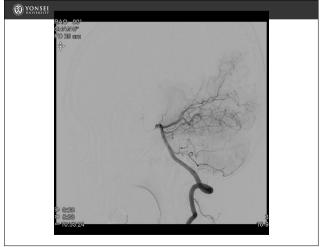


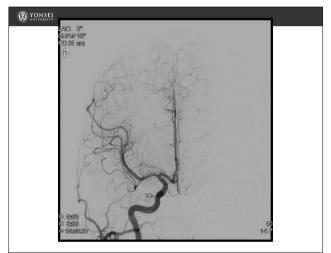

Mini-symposium for navigation to target vessels

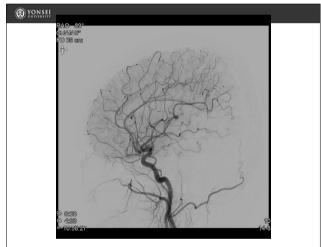


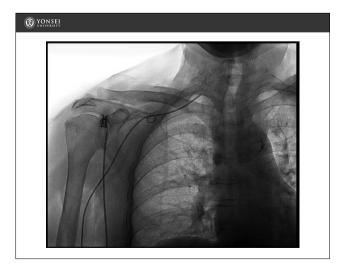


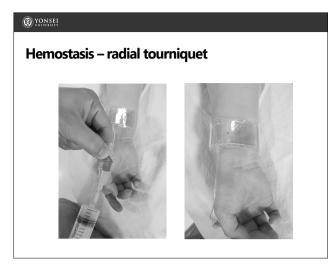


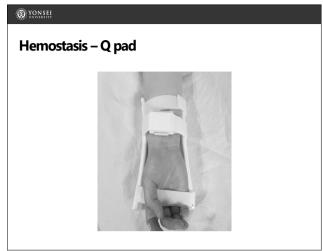


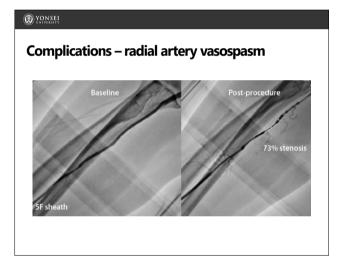


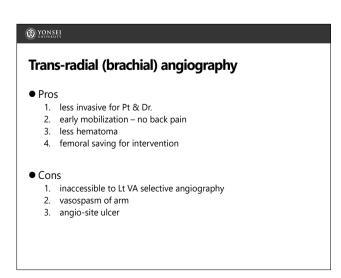




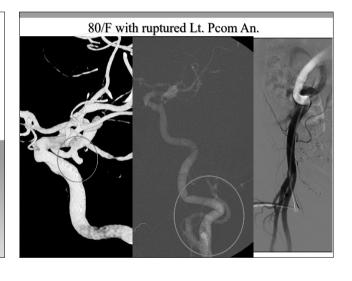


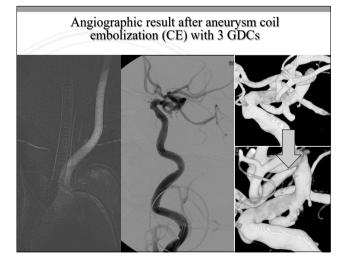


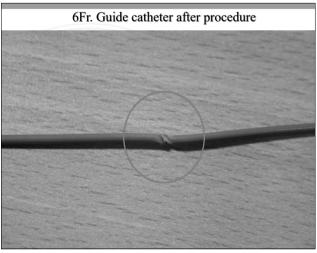




Direct carotid / vertebral approach

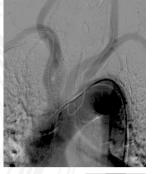

신동성, 이호준, 김범태

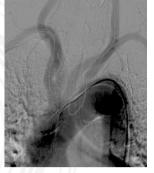

순천향대학교 부천병원 신경외과


Navigation to Target vessels Neck Dissection and Carotid Access (NDCA)

신동성 이호준 김범태

Dept. Neurosurgery, Soonchunhyang University Bucheon Hospital, South Korea,





Limitation of cranial access throng another route

Femoral route

- Can't overcome aortic curve due to arteriosclerotic change
- Brachial / Radial route
- Acute angle of vertebralcommon carotid junction
- Pass through aortic arch for target vessel approach

Bernardo Massière, Arno von Ristow, José Mussa Cury, Marcus Gress, Alberto Vescovi, Cleoni Pedron, Antônio Luiz Medina, Marcos Areas Masques, Paulo Roberto Silveira, and Salim Jeha tients with hostile anatomy is associated with lenge and associated clinical conditions. The f a 7.5 Fr sheath, nonintentionally implanted arotid sheath was removed after introducing is then introduced over the wire successfully d patency of the carotids, sealing of the punctid arteries. This maneuver allowed the safe eal) to close the puncture site. Ann Vasc Surg 2009; 23: 256.e5-256.e7

a Percutaneous Device

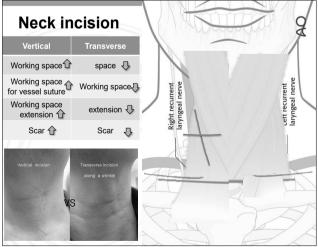
Closure of Carotid Artery Puncture Site With

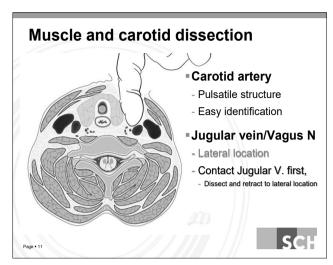
TECHNICAL NOTE K Nii

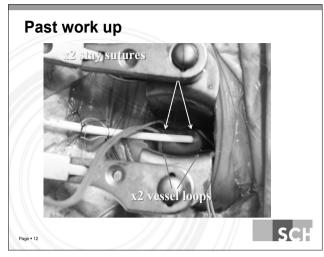
K. Kazekawa M. Onizuka H. Aikawa M. Tsutsumi M. Tomokiyo M. Iko T. Kodama S. Matsubara A. Tanaka

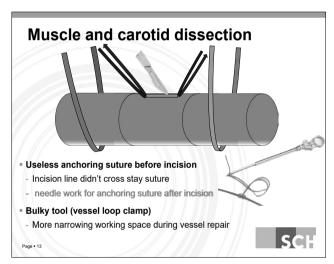
Direct Carotid Puncture for the Endovascular Treatment of Anterior Circulation Aneurysms

SUMMARY: We report the usefulness of Guglielmi detachable coil (GDC) embolization by direct carotid puncture for anterior circulation aneurysms. For all 27 patients, GDC embolization by direct carotid puncture was safely performed by using a 5F sheath introducer 5 cm long and a Tracker-38 catheter. Neurologic deficits and hemorrhage were not found in any patient during the follow-up period. If the transfermoral approach cannot be applied, GDC embolization should be considered as an alternative method. SHMMARY: We report the usefulness of Gualielmi detachable coil (GDC) embolization by direct carotid

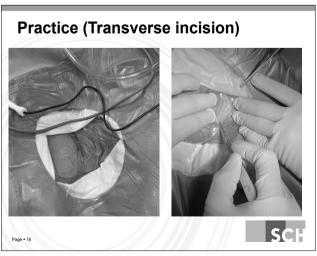


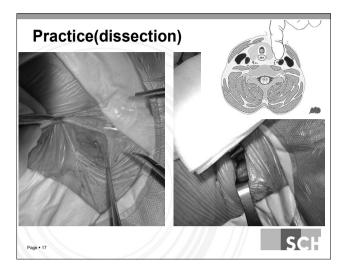

AJNR 27; Aug 2006; 1502-1504

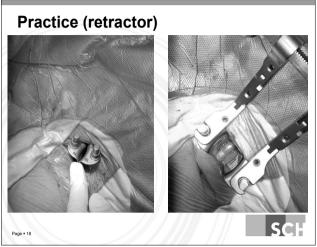

NDCA

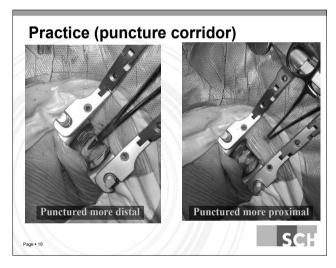

- Save Set up time for coil embolization
 - Selection, exchange time
- Reduce vessel manipulation during catheter work
 - Thromboembolic event
- Anesthesia 🗸
- Heparin infusion \square
- More straight work corridor
- Easy handling
- More secure puncture site due to surgical suture

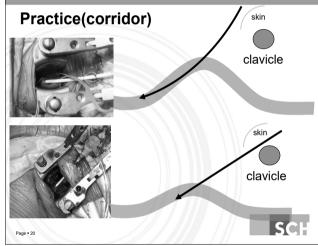


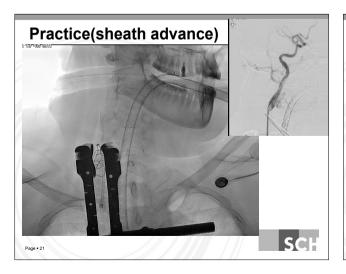


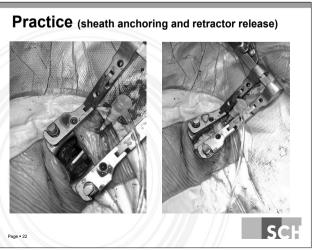


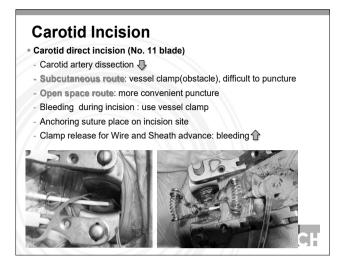


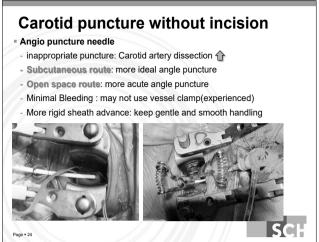


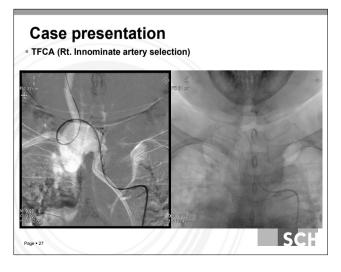


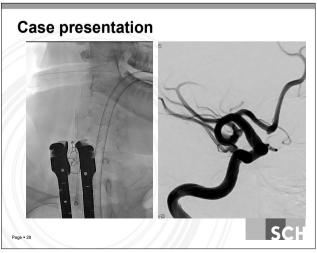


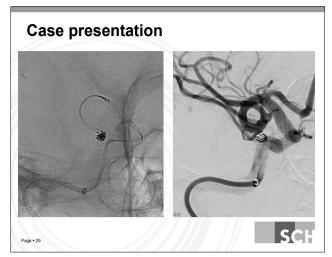












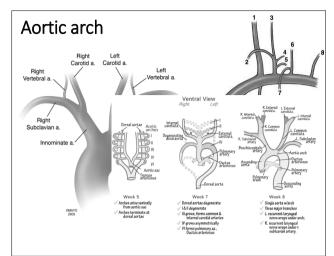
Guiding technique for endovascular surgery

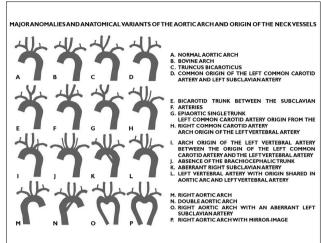
김성태

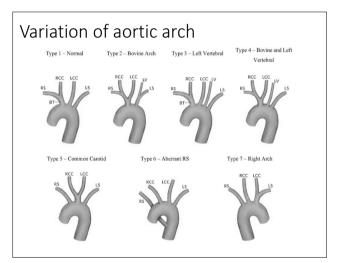
인제대학교 부산백병원 신경외과

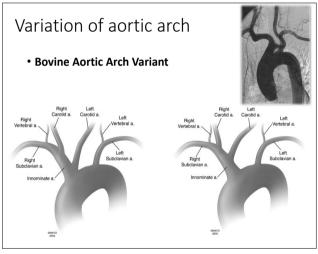
Guiding technique for endovascular surgery

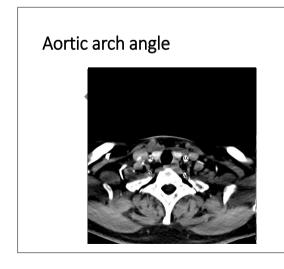
인제대학교 부산백병원

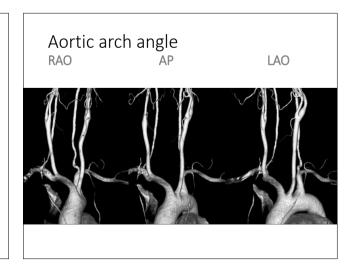

김 성 태

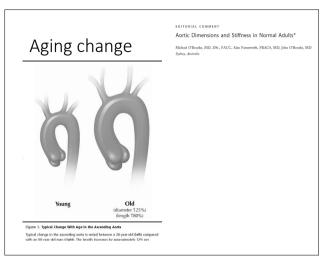

Guide Catheter


Contents

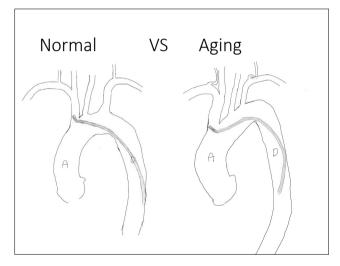

- 1. Anatomy of the Aortic arch
- 2. Concept of great vessel selection
- 3. Cases

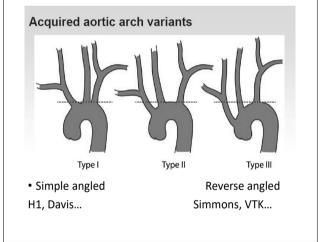

1. Anatomy of the Aortic arch











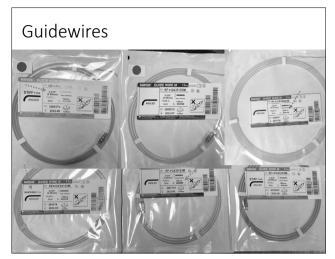
Mini-symposium for navigation to target vessels

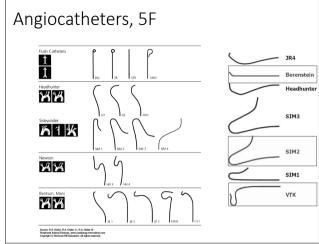
2.Concept of great vessel selection

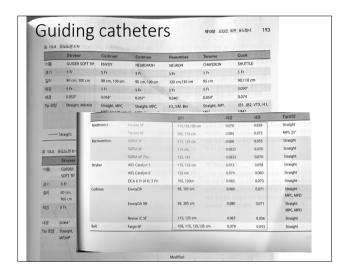
Wire, angiocatheter, and technique

Wires and Catheters for Cerebral Angiography

- Hydrophilic Wires

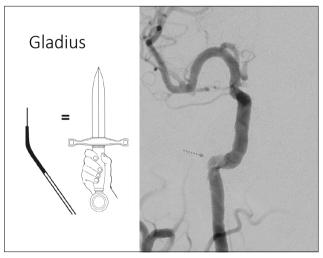

 1. The 0.035 in. angled Glidewire® (Terumo Medical, Somerset, NJ) is soft, flexible, and steerable.

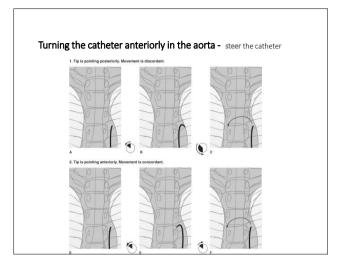

 2. The 0.038 in. angled Glidewire® (Terumo Medical, Somerset, NJ) is slightly stiffer than the 0.035 in., making it helpful when added wire support is needed.

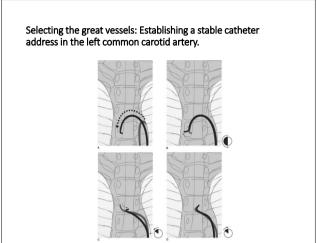

 3. Extra-stiff versions of these wires are available for even more support, but they should be used with
- extreme caution because of the tendency of the tip to dissect vessels

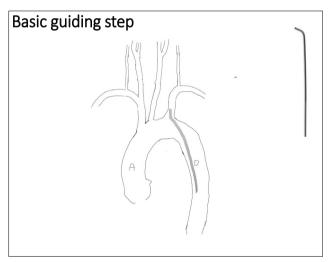
Catheters (100cm, 125cm)

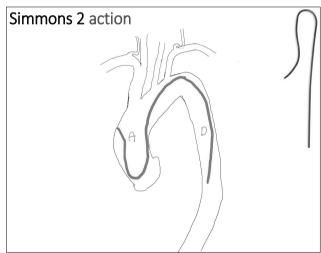
Many catheters are suitable for cerebral angiography (Fig. 2.1). As a general rule, use 100 cm long catheters that have a curve that allows selection of the vessels from the arch. Simpler curves (e.g., Berenstein curve) are adaptable to many anatomic situations and are most appropriate for young patients with straighter vessels. More complicated curves (e.g., Simmons curve) help deal with more difficult aortic arch anatomy.

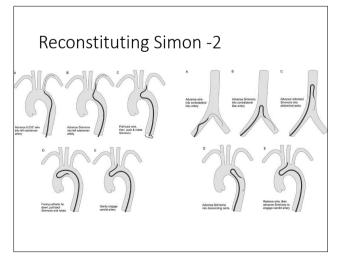


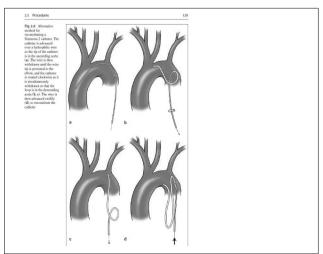


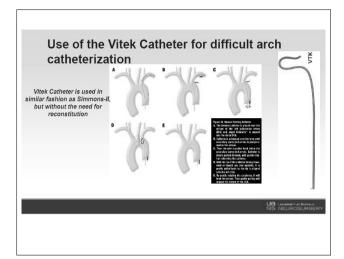

Guiding catheter size and length

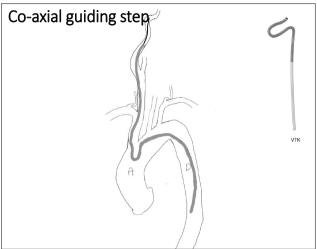

- Envoy 6F (100cm) + Terumo 035
- Envoy 6F DA (105cm) + Terumo 035
- Envoy 6F DA (105cm) + VTK 125cm + Terumo 035 (stiff)
- Shuttle 80cm + 6F Sofia (115cm) + VTK 125cm + Terumo 035 (stiff)
 Double co-axial
- Flowgate (8F, 95cm) + Catalyst 6 (6F, 132cm)

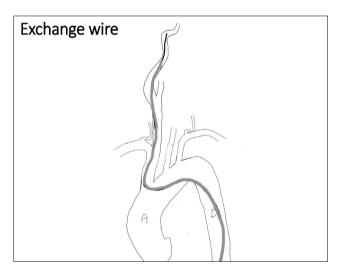


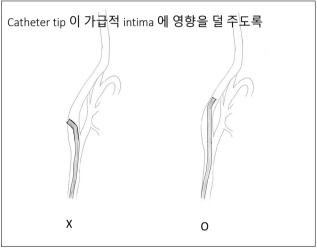


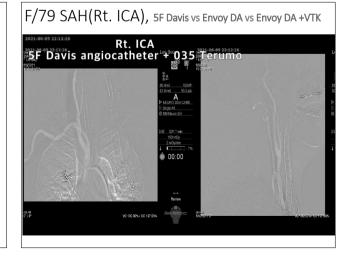


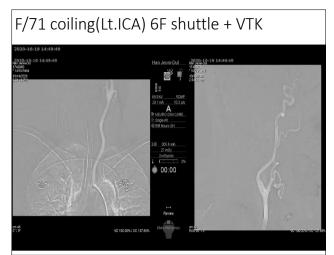




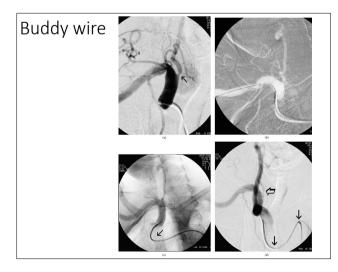


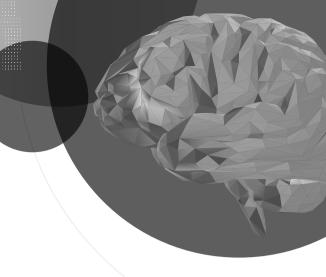






3. Cases





Recommendations

- Roadmap 를 항상 사용, angiocatheter 만 전진(X)
- Wire navigation 시 꼭 wire tip을 눈으로 확인하면서 하기
- Wire 를 길게 넣을수록 guiding 이 쉽고 안전하다
- 천천히 하기
- 무리하지 않는다

Theme: Exploring What is Next in Neuroendovascular Surgery

6/25(Fri.)

Free paper I: Ecstasy session (Troubleshooting for difficult cases)

좌장: 이호국(한림대) / 고준석(경희대)

FP1-1	Distinguishment the ruptured aneurysm at multiple aneurysm	배희진 (명지병원)
FP1-2	SAH and dissecting aneurysm of ophthalmic artery	김소연 (가톨릭관동대학교 국제성모병원)
FP1-3	Treatment of symptomatic partially thrombosed giant fusiform aneurysm of basilar artery	김재현 (계명대학교 동산병원)
FP1-4	Successful rescue from desperate complication; retrieving damaged stent and migrated coil with another retrievable stent - A case report	박성찬 (울산대학교병원)
FP1-5	Onyx embolization of dural AVF in the superior sagittal sinus region using external compression and direct open access: A case report	장동규 (가톨릭대학교 인천성모병원)
FP1-6	Use of a rigid-tipped microwire for the endovascular treatment of cavernous sinus dural arteriovenous fistula with a membranous stricture	박중철 (울산대학교 서울이산병원)
FP1-7	Treatment of symptomatic tandem BA & V4 severe stenosis	박현욱 (부산부민병원)

Distinguishment the ruptured aneurysm at multiple aneurysm

Heejin Bae

Department of Neurosurgery, Myongji Hospital

Objective: Distinguishment ruptured aneurysm from unruptured one is paramount at subarachnoid hemorrhage patient. There are several factors to distinguish such as morphology, size, location, and imaging finding. Nevertheless, we should remember there could be atypical case.

Result: 63-year-old woman visited emergency room complaining dizziness. Subarachnoid hemorrhage was diagnosed with brain computed tomography (CT), and 2 aneurysms were found at right middle cerebral artery bifurcation (MCAB) and posterior cerebral artery (P1). The aneurysm at right MCAB was thought ruptured due to its characteristics (larger size and having bleb). The aneurysm neck clipping surgery for right MCAB aneurysm was done, revealed the aneurysm had not rupture. Stent-assisted coil embolization for P1 aneurysm was followed surgery. Patient recovered well, and discharged.

Conclusion: Even there were some parameters to distinguish ruptured aneurysm from unruptured one, none of them are definite. Thus, we should focus to find ruptured aneurysm out as possible as accurately, and prepare when the aneurysm suspected to be ruptured is not ruptured.

FP1-2

SAH and dissecting aneurysm of ophthalmic artery

So Yeon Kim

Department of Neurosurgery, Catholic Kwandong University International St. Mary's Hospital

Objective: A 40-year-old male patient visited ER presenting a sudden severe headache during sexual intercourse. Noncontrast CT showed Fisher Gr 3 SAH along the Lt sylvian fissure, suggesting aneurysm rupture. However, emergent cerebral angiography revealed no rupture aneurysm but mild bulging at Lt ophthalmic artery.

Methods: The patient was suffering from a moderate headache but follow-up CT angiography and MR angiography showed no suspected aneurysm. However, cerebral angiography underwent at rupture day #8, mild bulging at Lt ophthalmic artery became bigger and evolved to a 2m sized aneurysm, suggesting ruptured ophthalmic aneurysm. Coil embolization was planned for the obliteration of the ruptured aneurysm.

Result: The selection of an ophthalmic artery orifice was quite easy, but the advancement of the microcatheter distal to the aneurysm was very difficult. After several trials, microcatheter selection to the aneurysm sac was finally achieved by inflating a hyper-complaint balloon supporting the microcatheter. Coil embolization was successful with effort, and the patient's condition was good even after the delayed procedure. Nevertheless, follow-up angiography underwent a week after revealed further aggravation of dissecting segment. After balloon occlusion test for ECA to ophthalmic artery collaterals, ophthalmic artery occlusion with coils and ICA stenting was performed.

Conclusion: This is a rare case of an ophthalmic artery dissecting aneurysm presenting with SAH. In serial follow-up angiography, it showed a consistent change of morphology. After evaluating ECA collaterals, parent artery occlusion was performed at last without complications.

Treatment of symptomatic partially thrombosed giant fusiform aneurysm of basilar artery

Jae-Hyun Kim, Chang-Hyun Kim, Chang-Young Lee

Department of Neurosurgery, Dongsan Medical Center Keimyung University School of Medicine

Objective: The natural course of symptomatic Partial thrombosed giant fusiform aneurysm of basilar artery is devastating. Therefore, various treatment methods have been introduced, but a definitive treatment has not been established yet. We report a case applying parallel and telescopic stents first with interval period in one patient and then implanting flow diverter.

Methods: A 42-year-old female patient showed old pons infarction and Partial thrombosed giant fusiform aneurysm of the basilar trunk, parallel and telescopic stent deployment was performed as the first treatment. An progressive enlarged basilar aneurysm was observed on the 12 months followed cerebral angiogram. Unintentionally, additional flow diverter was implanted through the preexisted conventional stents as a second treatment.

Result: The patient had recurrent pons infarction, 3 months after the first treatment. However, the symptoms resolved with mRS 0. The flow diverter deployment as a second treatment was technically successful.1 year later the procedure, complete occlusion with minor residual filling was observed on the angiography. However, there was no change in the size of aneurysm with mass effect on brainstem in MRI. The patient was observed no other neurological symptoms or recurrent ischemic events at 24 months f/u.

Conclusion: For the treatment of Partial thrombosed giant fusiform basilar aneurysm, an established optimal treatment has not yet been introduced. In this case, fortunately, effective occlusion result on the angiogram was obtained through chronological parallel and telescopic stents deployment and then flow diversion stent insertion. However, it cannot sure that the aneurysm was cured, because the size of aneurysm was not reduced and histological changes within the aneurysm were unknown. Therefore, remained issue of treatment for symptomatic Partial thrombosed giant fusiform aneurysm of basilar artery should be continuously elucidated.

Successful rescue from desperate complication; retrieving damaged stent and migrated coil with another retrievable stent - A case report

Sung Chan Park, Soon Chan Kwon

Department of Neurosurgery, Ulsan University Hospital, University of Ulsan, College of Medicine

Coil migration is relatively well-known complication and there are many reports for removal of migrated coil. However, dislocation of stent with migration of coil may be an extremely rare case. A 52-year-old woman underwent a coiling for Lt. distal ICA An. During procedures, stent was mal-positioned to proximal and damaged, and detached coil was migrated to distal M1. The coil and stent were retrieved by Solitaire Platinum stent. We want to report extremely rare our case and technical tips.

Onyx embolization of dural AVF in the superior sagittal sinus region using external compression and direct open access: A case report

Seonjun Jeong, Dong-Kyu Jang, Byung-Rae Cho

Department of Neurosurgery, Incheon St. Mary's Hospital and College of Medicine, The Catholic University of Korea

Objective: Dural arteriovenous fistula (DAVF) in the superior sagittal sinus (SSS) region is difficult to treat. A very tortuous anatomical course sometimes hampers the access of fistula point through MMA or scalp artery. We here report a DAVF case in the vicinity of mid-SSS treated with IA onyx embolization through external manual compression and direct open access.

Methods: A 69-year-old man presented with post-traumatic intractable seizure at 5 months later after multiple cerebral contusions due to falling was diagnosed with DAVF in the region of mid-SSS. Brain MRI showed high signal change on both frontal lobes and left parietal lobe. EEG displayed occasional spikes in the left fronto-temporal region. Diagnostic angiography showed Cognard type IIB with feeding arteries of both superficial temporal arteries and occipital arteries, left middle meningeal artery (MMA) and cortical venous reflux and normal SSS function. Intraarterial (IA) embolization was planned.

Result: As left MMA was very thin and not a main feeder, but scalp arteries were main feeders, IA onyx embolization through left STA anterior, middle, and posterior branches super-selection using external compression technique for microcatheter navigation and prevention of onyx reflux and too extensive spreading into normal scalp arteries achieved subtotal occlusion with remnant small shunt from right OA and STA branches without cortical reflux. The following day after first IA embolization, seizure attack persisted. Therefore, remaining fistula was treated with onyx embolization through direct open access of right STA parietal branch under the C-arm angiography because right external carotid artery had a severe tortuous course. Complete occlusion was achieved without any complications.

Conclusion: In a specific case of DAVF in the SSS region with difficult access but dominant scalp feeding arteries, external compression technique and direct open access may enable successful IA embolization.

FP1-6

Use of a rigid-tipped microwire for the endovascular treatment of cavernous sinus dural arteriovenous fistula with a membranous stricture

Jung Cheol Park

Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center

Objective: Transvenous embolization (TVE) via an occluded inferior petrosal sinus (IPS) in a cavernous sinus dural arteriovenous fistula (CSDAVF) is challenging, often requiring navigation of a microcatheter through resistive strictures between the occluded IPS and dilated cavernous sinus (CS) sac. We report a cases of successful target access by puncturing the stricture with a rigid-tipped microguidewire (Conquest pro 12 [Asahi Intecc Co., Ltd]), initially designed for the cannulation of chronic total occlusion (CTO) during coronary artery revascularization.

Methods: 52-year female patient was underwent procedure using the CTO wire during TVE.

Result: Despite successful access through the occluded IPS, further entry into the target region was not possible due to the strictures within the venous sac. However, puncturing the strictures using the rigid-tipped microguidewire was successful. We advanced the microcatheter over the rigid wire for additional navigation to the fistular hole, and achieved complete occlusion of the shunt without complications.

Conclusion: We overcame tight strictures, which seemed otherwise impossible to pass through with standard guidewires and microcatheters, using a rigid-tipped microguidewire in the cannulation of the occluded IPS for the TVE of a CSDAVF.

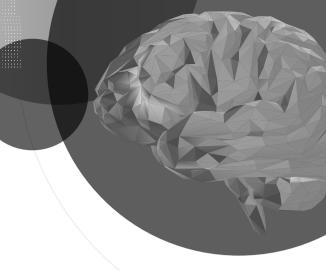
Treatment of symptomatic tandem BA & V4 severe stenosis

Hyun Wook Park

Department of Neurosurgery, Busan Bumin Hospital

Objective: Several reports have demonstrated the feasibility of basilar artery(BA) stent in symptomatic BA stenosis. But, concerns about stent of BA have included the risk of occluding the ostia of the pontine perforators by compression of the plaque. We report our experience with stenting of V4 stenosis in symptomatic tandem BA and Lt. V4 severe stenosis.

Methods: A 78-year-old male presented with intermittent dysarthria and quadriparesis that had occurred 5 days before admission. Brain CTA and Diffusion MRI was done which demonstrated tandem BA and Left V4 severe stenosis, and no acute infarction. TIA was diagnosed and aspirin and clopidogrel were prescribed. 8 days later, he revisited with severe dysarthria and quadriparesis Gr IV. Diffusion MRI showed acute pontine infarction. TFCA showed 89% stenosis in Lt. V4 stenosis, 85% stenosis in the BA, and Rt. V4 had no stenosis. We should decide on stent treatment of BA severe stenosis. But, the risk of infarction in symptomatic BA stenting is high. So we decided to treat only Lt. V4 stenosis with a stent. Procedures were performed using Gateway balloon and Wingspan stent and there were no procedure related complication. He was discharged 7 days later with recovery from dysarthria and quadriparesis. Currently, he visits the outpatient clinic alone without neurological symptoms for 1 year.


Result: BA blood flow is supplied by both V4 blood flow. Therefore, we thought that BA blood flow would increase if the blood flow of the left V4 was improved by stenting. For this patient's symptomatic BA stenosis, we thought that BA stent treatment would increase the risk of exacerbation of pontine infarction. Therefore, the progression of pontine infarction could be prevented by improving left V4 blood flow by stenting.

Conclusion: When both BA and unilateral V4 have symptomatic severe stenosis, the risk of pontine infarction can be prevented even if unilateral V4 blood flow is improved by using stent.

The 15th Annual Summer Conference on Endovascular Neurosurgical Therapy

ASCENT 2021

Theme: Exploring What is Next in Neuroendovascular Surgery

6/25(Fri.)

Symposium I: Interdisciplinary session

좌장: 김범태(순천향대) / 양수근(인하대 의생명학과)

1. Neurostimulation & clinical application

정용안(가톨릭대 핵의학과)

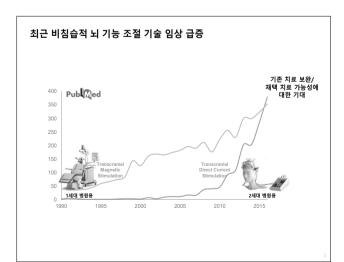
2. The Computer Aided Diagnostics Algorithm and Intracranial Applicable Catheter of Intravascular OCT

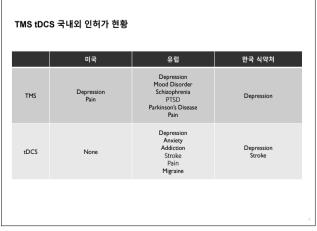
이종하(계명대 의용공학과)

3. Stroke rehabilitation at present, and in the future

김수아(순천향대 재활의학과)

Neurostimulation & clinical application


정용안

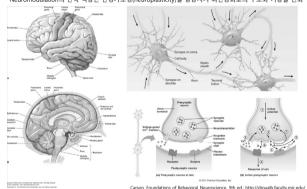

가톨릭대학교 방사선과학교실 핵의학과

Neurostimulation & Clinical Application

2021. 06. 25. Yong-An Chung, MD, PhD

Neuromodulation

- 전기/자기 등의 에너지, 화학물질 등의 외부 자극을 이용하여 뇌신경계 기능을 조절하는 기술 (cf. brain stimulation, neurostimulation)
- 침습적(invasive) 또는 비침습적(non-invasive) 기술로 구분
 - 침습적: 뇌심부자극 등
 - 비침습적: 전기경련요법, 경두개자기자극, 경두개직류자극, 경두개집속초음파 등
- 뇌 기능의 향상 및 억제를 모두 포괄
- 뇌과학/의학 연구에서 빠르게 중요성이 커지는 분야로서, 최근 뇌신경회로망의 기능을 선택적으로 조절함으로써 인지 및 정서 기능을 조절하는 기술이 미래유망기술로 선정



Neuromodulation 기술의 중요성

- 다양한 뇌질환에 대한 치료 기술로서의 가능성
 - 현재 임상에서 약물치료, 인지행동치료 등에 비해 널리 사용되지는 못함
 - 기존 치료에 반응을 보이지 않는 환자에게는 유력한 대안 또는 병행치료 전략이 될 수 있음
 - 뇌 특정 영역만을 타켓팅 가능하여 기존 중추신경계 약물에 비해 전신 부작용이 덜하고 환자의 거부감이 적음
- 뇌과학 기초 연구에서의 확용 가능성
 - 기존에는 뇌 기능 연구를 위해 뇌졸중/외상 등으로 인해 뇌의 특정 영역이 손상된 환자의 인지, 정서, 행동 등의 변화를 관찰
 - Neuroimaging 기술과 함께 neuromodulation으로 특정 뇌영역/회로의 기능을 조절하면서 인지, 정서, 행동 등의 변화를 관찰함으로써 뇌-마음-행동 사이의 인과관계 규명 및 brain mapping에 중요한 도구로 활용 가능 (예: functional knockout 또는 인지기능 항상 연구)

뇌의 신경신호 전달

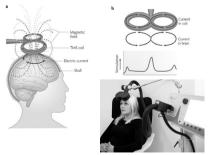
- Dendrite -> cell body -> axon의 방향으로 neuron내 전기적 신호 전달
- Synapse에서는 신경전달물질(neurotransmitter)을 이용하여 이웃 neuron으로 화학적 신호 전달
- Neuromodulation의 반복 적용은 신경가소성(neuroplasticity)를 향상시켜 뇌신경회로의 구조와 기능을 변화

전기경련요법 (Electroconvulsive Therapy, ECT)

- 1930년대 개발된 가장 오래된 비침습적 신경조절 기술로 특정 영역이 아닌 뇌 전반의 기능 조절
- 뇌에 강한 전기 자극을 가하여 경련을 유발함으로써 심한 정신질환의 증상을 호전
- 약물치료, 정신치료로는 치료 반응을 보이지 않거나 응급상황/빠른 치료 효과가 필요한 경우에 한하여 주로 사용 (예: 약물저항성/자살 위험이 높은 우울장애 등)
- 치료 반응에 보통 수 주가 걸리는 약물에 비해 빠른 경우 1주일 이내로 효과가 빠르고, 약물 사용이 조심스러운 노인 환자들에 유용
- 일부 일시적 두통, 복통, 근육통, 기억손실 등의 부작용 (수 일~수 주내 태부분 회복)

https://www.dailymail.co.uk

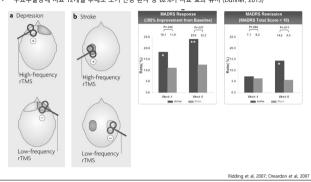
뇌심부자극술 (Deep Brain Stimulation, DBS)

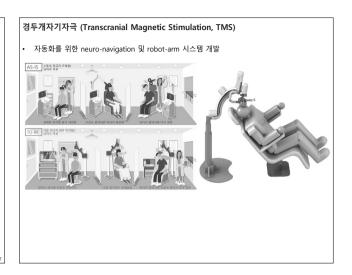

- 뇌심부에 전극을 삽입하여 전기적으로 자극하는 침습적 신경조절 기술
 - 뇌 MRI 영상을 확인하며 수술을 통해 전극을 타겟 뇌심부에 삽입
 전류를 조절하는 전류발생장치를 쇄골 아래 피부 밑에 이식
 - 전기자극이 지속적으로 유지되며 세기와 빈도는 환자에 맞게 조절 가능
- 파킨슨병과 같은 딸림, 경직, 보행 문제 등 신경학적 운동 장애 호전을 위해 고안되었으며, 난치성 우울장애와 강박장애 치료에도 연구되고 있음
- 전극 삽입을 위한 수술에 따른 위험
 - 출혈 및 감염의 가능성은 매우 드물지만, 일시적이고 경미한 어지러움, 기분 변화, 불면 등 보고
 - 물열 및 감염의 가능성은 매우 느물시만, 일시적이고 경미한 어시러는
 전극의 타켓팅 정확도에 따라 치료 효과 및 부작용이 달라질 수 있음

Okun 2012

경두개자기자극 (Transcranial Magnetic Stimulation, TMS)

- 두피 가까이 위치한 전자기코일로 만든 자기장이 두개골을 통과하여 뇌신경에 닿으면 미세한 전류를 유도하여 타켓 뇌영역의 활동을 조절하는 비침습적 기술
- 코일 내의 전기에너지 -> 코일 주변의 자기에너지 -> 뉴런 내의 전기에너지
- 고주파 자극은 기능 향상, 저주파 자극은 기능 억제
- 두피와의 직접 접촉이 없다는 장점 / 일부 경미하고 일시적인 두통, 두피 불편감 등




Ridding et al, 2007; Oreardon et al, 2007

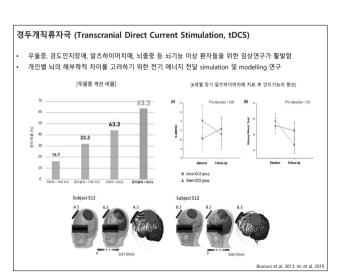
Symposium I: Interdisciplinary session

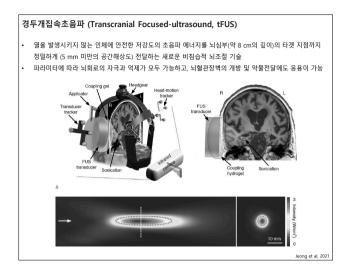
경두개자기자극 (Transcranial Magnetic Stimulation, TMS)

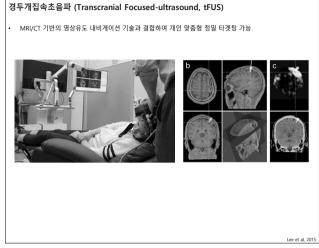
- 우울, 불안, 조현병 등 다양한 뇌질환 치료기술로 연구되어 왔으며, 2008년 항우울제에 치료 반응을 보이지 않는 주요우울장에 환자에 대한 치료법으로 미국 FDA 승인
- 메타분석에서 30~50% 주요우울장애 환자에서 치료 반응 및 20~30%에서 관해 (Berlim, 2014)
- 주요우울장애 치료 12개월 후에도 초기 반응 환자 중 62%가 치료 효과 유지 (Dunner, 2013)

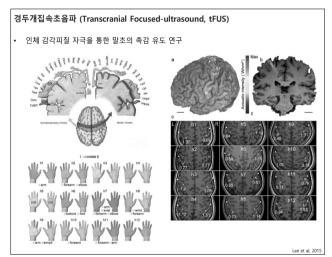
경두개직류자극 (Transcranial Direct Current Stimulation, tDCS)

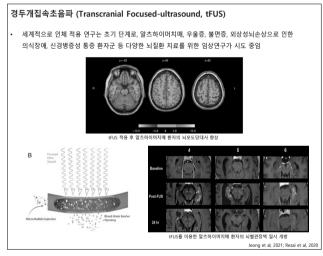
- 두피에 부착한 두개의 전극 사이로 약 1~2mA의 미세 직류전류를 가하여 뇌기능을 조절하는 비침습적 기술
- 일반적으로 양극은 뇌신경 활성화, 음극은 억제
- 보통 1세션 당 15~30분 정도 적용하며 1회~수회 적용 가능
- TMS에 비해 가볍고 작으며 저렴한 portable 기기로 제작 가능
- 우울증, 뇌졸중 등에 대한 치료 및 정상인의 인지기능 향상 연구 등
- 일부 경미하고 일시적인 따끔거림, 가려움, 두통 등 보고

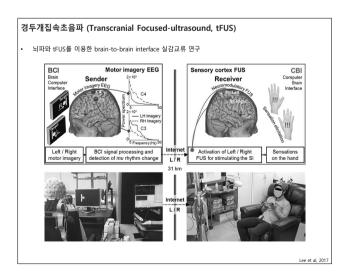


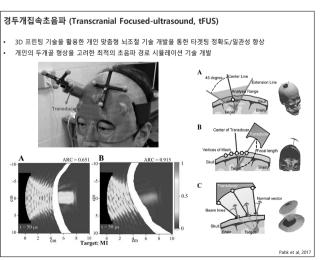


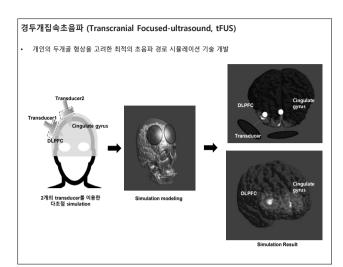

경두개직류자극 (Transcranial Direct Current Stimulation, tDCS)

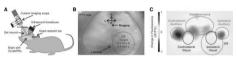

• 정상인의 인지기능에 미치는 영향에 대한 연구 (Van Meel, 2016)

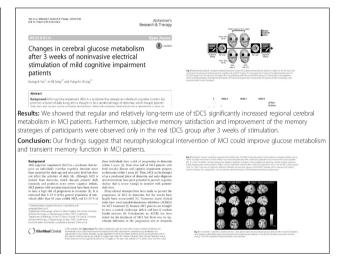

Relevant task tredevant task tredevant







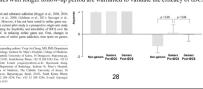


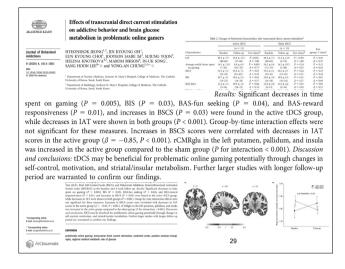


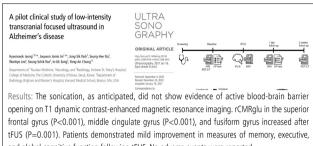
Neuromodulation 기술의 발전 방향

- 뇌신경한전 기전에 대하 연구
 - 뇌질환의 뇌신경회로 이상 기전 및 neuromodulation의 보다 구체적인 작용 기전에 대한 연구 필요
 - 뇌신경 네트워크의 변화를 특정 뇌영역의 활성화/비활성화로 단순화할 수 없음
 - 일부 연구에서 특정 인지기능이 향상된 반면, 다른 인지기능의 저하가 함께 나타남이 보고됨
 - 동물모델 및 다양한 뇌영상을 이용한 뇌기능 변화 및 치료 반응 예측 연구가 활발함
- 효과와 와저성에 대하 검증
 - 수개월 이상 장기 적용 시의 효과와 안전성에 대한 검증
 - 발달기의 소아/청소년 및 노인에 대한 검증
 - 스마트폰/웨어러블 디바이스 등과 연동된 재택 자가 적용에 대한 안전성 검증 및 제도적 장치 마련
 - 비임상적 기능성 의료기기로의 활용 가능성 탐색 (일반인의 인지기능 향상, 스트레스 조절 등)

in executive function at a marginal level (p for interaction < 0.10). rCMRglc in the left middle/inferior temporal gyrus was preserved in the active group, but decreased in the sham group (p for interaction < 0.001).


Conclusions: Daily tDCS over the DLPFC for 6 months may improve or stabilize cognition and rCMRglc in

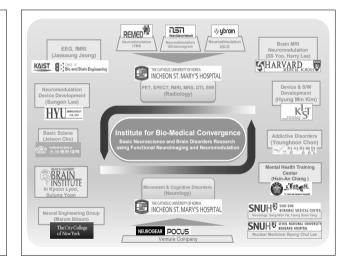




IAT (p < .001) and BDI-II (p = .01) were decreased, whereas BSCS score was increased (p = .01). Increases in selfcontrol were associated with decreases in both addiction severity (p = .002) and time spent on games (p = .02). Moreover, abnormal right-greater-than-left asymmetry of regional cerebral glucose metabolism in the DLPFC was partially alleviated (p = .04). Conclusions: Our preliminary results suggest that tDCS may be useful for reducing online game use by improving interhemispheric balance of glucose metabolism in the DLPFC and enhancing selfcontrol. Larger sham-controlled studies with longer follow-up period are warranted to validate the efficacy of tDCS in

and global cognitive function following tFUS. No adverse events were reported.

Conclusion: These results suggest that hippocampal sonication with low-intensity tFUS may have beneficial effects on cerebral glucose metabolism and cognitive function in patients with AD. Further larger studies are needed to confirm the therapeutic efficacy of tFUS in AD.

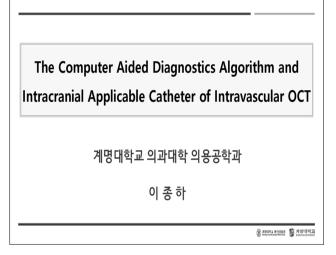


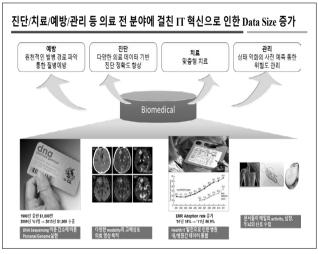
건강위험요소에 따른 기대 수명의 상실

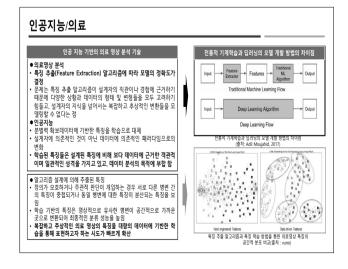
하루 20 개비의 흡연 - 6년 15%의 과체중 - 2년 평균적인 음주 – 1년 진료에 의한 방사선 피폭 - 7일 직업적인 방사선 피폭

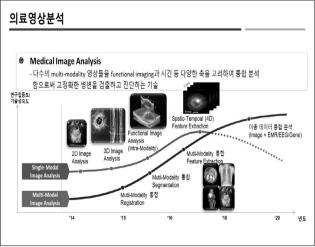
- 0.3 rem (3 mSv)/년(18-65세): 15일
- 1.0 rem (10 mSv)/년(18-65세): 51일

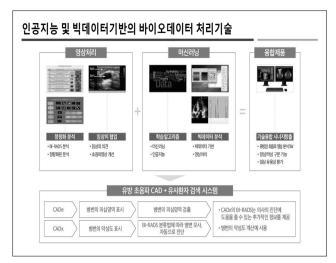
The Administration of Radioactive Substances Advisory Committee (ARSAC)

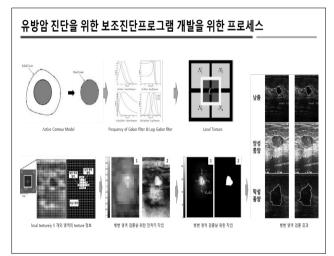


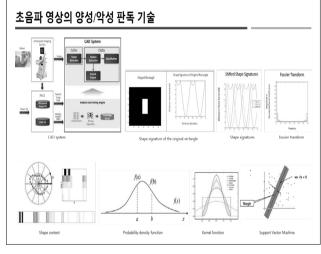

Thanks for your attention!!

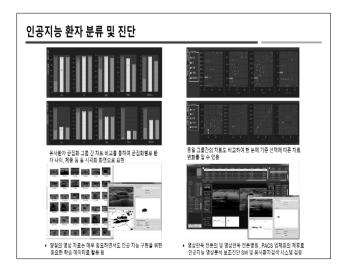

The Computer Aided Diagnostics Algorithm and Intracranial Applicable Catheter of Intravascular OCT

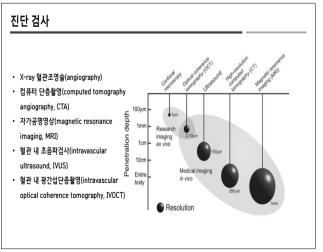

이종하

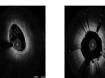

계명대학교 의과대학 의용공학과



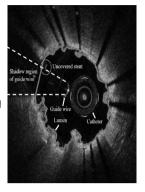


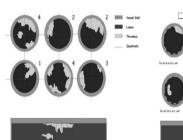


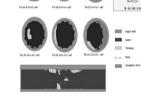




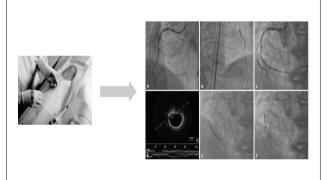
Intravascular Optical Coherence Tomography (IVOCT)




- · What are the advantages?
- 1) 침습적 방법으로 혈관 단면 영상 촬영하는 기기 2) IVUS 보다 해상도가 10배 높고, 영상화 속도가 빠름
- 3) 심혈관 중재술 평가 및 혈전 검출 가능
- 4) 상대적으로 높은 해상도로 빠르게 영상화가 가능하 므로 의료현장에서 임상 활용 가치가 매우 높음


IVOCT 영상 처리 알고리즘 연구 고려사항

- 영상 내 혈액 덩어리(blood clot) 혈관 내강 영역에서 관찰
 - 광신호를 흡수하여 혈관 내벽을 덜 밝게 듦
 - 혈관 내강의 경계 추출시 노이즈로써 경계 검출을 방해
- 혈관 내강의 표면이 종종 불규칙한 형태
 - 혈전은 혈관 내강의 표면에서 불규칙한 돌출부로 관찰
 - 전자동 혈관 내강 분할시 혈관 내강 형태학적 특징 고려
- 가이드 와이어, 스텐트 스트럿 그림자로 내강 형태 왜곡
 - 가이드 와이어는 카테터를 가이드하는 용도로 사용
 - 영상 중앙 위치, 그림자를 포함한 원의 형태로 관찰 - 그림자가 존재하는 혈관 내강의 일부분은 검정색 왜곡


Assessment and Quantification of Intracoronary Thrombus

*Optical coherence tomography assessment and quantification intracoronary thrombus: Status and perspectives (Italo Porto, 201

Research Hypothesis

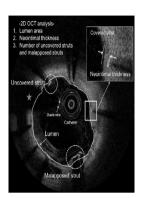
Research Hypothesis

Key Words: Thrombus, Lumen Segmentation, Lumen Classification, Machine Learning

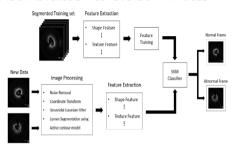
Research Objective

A Fully Automated Lumen Segmentation Algorithm

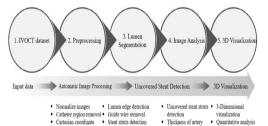
Normal/Abnormal Lumen Classification


Normal Frame

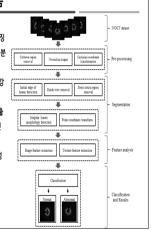
Abnormal Frame


Characteristics of IVOCT Images

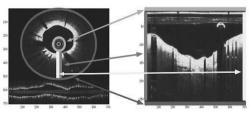
- · What are the difficulties of IVOCT image processing?
- 1) IVOCT는 적혈구에 의해 노이즈가 많이 발생
- 2) Guide wire의 Shadow를 고려 (Red star)
- 3) Catheter Object 고려
- 4) Stent strut 고려 (Uncovered struts, Malapposed struts)
- 5) Side Branch 고려
- 6) Thrombus가 존재하면 Lumen의 형상이 Irregular


컴퓨터 보조 진단 연구

- 컴퓨터 보조 진단(computer aided diagnosis, CAD)는 의사가 의료 영상을 판독하는데 보조할 수 있는 시스템
- X-ray, CT, MRI, 초음파, 양전자단총촬영(positron emission tomography, PET) 등 다양한 의료영상화
- 영상판독 시간 단축, 작업의 일관성을 높이고 정량적 분석 결과를 통해 의사의 최종 진단을 보조


3-D Visualization Algorithm for IVOCT Images

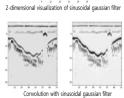
- 약물 방출 스텐트를 시술한 환자의 경우 단기간 또는 장기간 동안 재협착의 우려가 있어, 환자의 약물 방출 스텐 트의 배치와 상태를 정기적으로 재진단하는 것이 중요
- 약물 방출 스텐트와 동맥의 구조적 관계를 이해하기 위해 혈관 내강과 스텐트 스트럿을 전자동으로 검출한 후 혈 관과 스텐트 스트럿을 2차원 및 3차원으로 시각화하고, uncovered stent의 위치를 분석하는 알고리즘을 제안

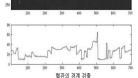

전자동 혈관 내강 분할 및 분류 알고리즘

- IVOCT 영상에서 관찰되는 혈관 내강을 분할한 후, 형상 특징 과 질감 특징을 추출하여 정상 또는 비정상 혈관 내강으로 분 류하는 알고리즘을 제안
- 가이드 와이어의 그림자 영역 및 스텐트 스트럿은 혈관 내강 의 초기 경계의 패턴을 분석하여 검출
- 혈관 내강에서 38 개의 형상 특징과 54 개의 질감 특징 추출
- Partition-Membership Filter 사용 최적의 특징 벡터를 선
- 벡터를 지도학습 기반의 기계 학습 알고리즘을 사용하여 정 상 또는 비정상 혈관 내강으로 분류

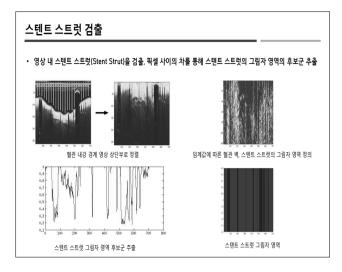
IVOCT 영상의 3차원 시각화 알고리즘

- IVOCT 영상은 극좌표계로 표현
- 효율적인 영상처리를 위해 극좌표계인 IVOCT 영상을 직각좌표계로 변환
- 극좌표계인 IVOCT 영상의 중심점을 기준으로 보라색 선에서 노란색 선까지 직각좌표계로 변환

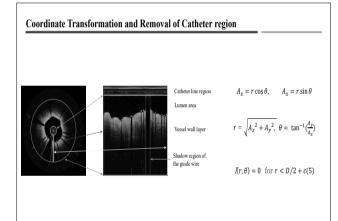


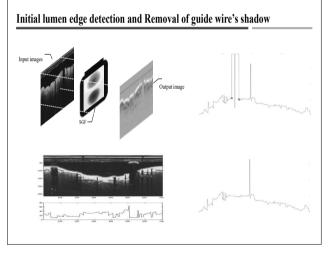

Coordinate transformation

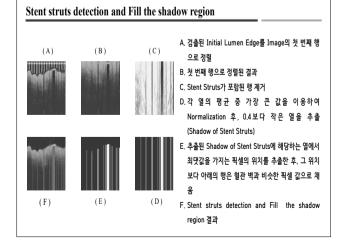
혈관 내강과 외막의 경계 추출

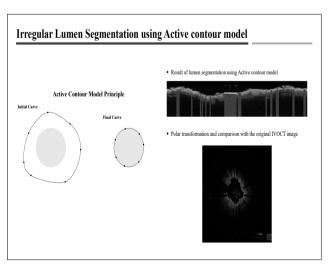

• 혈관 내강의 경계를 검출하기 위해 수직 정렬된 sinusoidal gaussian filter(SGF)로 IVOCT 영상을 컨볼루션

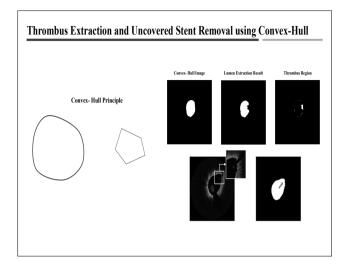


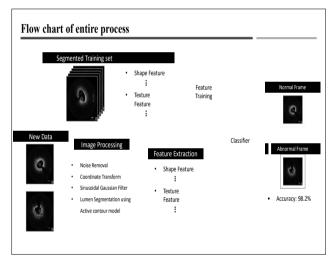


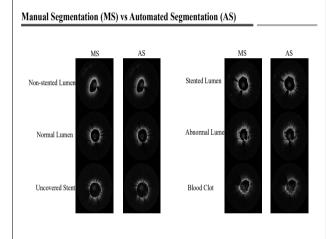


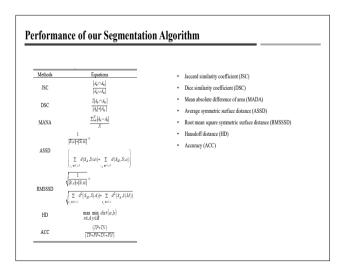

Symposium I: Interdisciplinary session



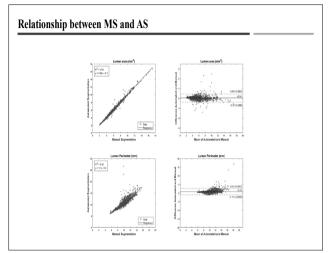


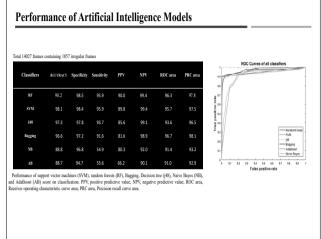

Shape Feature and Texture Feature Extractions


Feature	Feature Name
No.	reature vanie
1-32	Fourier Descriptors
33-81	Gray-Level Co-occurrence Matrix
82	GLCM-Homogeneity
83	GLCM-Energy
84	GLCM-Correlation
85	GLCM-Contrast
86	GLCM-Entropy
87	Circularity
88	Mean Curvature
89	Gaussian Curvature
90	Compactness
91	Solidity
92	Absolute Mean Curvature
93	Bending Energy


- 39개의 형상 특징과 54개의 질감 특징 정의
- The WEKA 3.8.1 has the Partition-Membership Filter that can apply any PartitionGenerator to a given feature vector to get these filtered vectors for all instances. The Partition-Membership Filter that uses a PartitionGenerator generate partition membership values: filtered instances are composed of these values plus class attribute and

• PatitionMemberShip Filter를 사용해 최적의 Feature Vector 정


make as sparse instances.
- 총 6가지의 Machine Learning model 사용.
Support vector machine (SVM), AdaBoost (AB), J48,
Random Forest (RF), Naive Bayes (NB), Bagging.

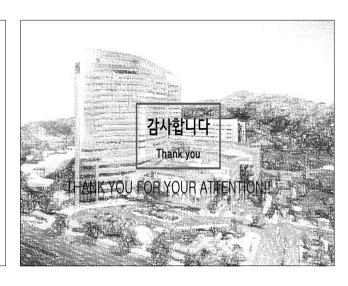


Case (Numbers)	JSC	DSC	MADA	ASSD	Hausdorff	RMSSSD	ACC
Total (1541)	95.4(2.2)	97.6(1.2)	0.27(0.19)	0.033(0.007)	0.061(0.013)	0.036(0.008)	98.9(1.2)
Non-stented (627)	95.7(1.5)	97.8(0.8)	0.18(0.06)	0.030(0.004)	0.054(0.005)	0.032(0.005)	99.4(0.5)
Stented (914)	95.2(2.6)	97.6(1.4)	0.32(0.23)	0.035(0.008)	0.066(0.013)	0.038(0.008)	98.6(0.9)
Normal (1227)	95.5(2.2)	97.6(1.2)	0.26(0.20)	0.033(0.007)	0.060(0.013)	0.035(0.008)	99.0(0.8)
Abnormal (314)	94.9(5.5)	97.2(5.1)	0.31(0.32)	0.035(0.009)	0.064(0.014)	0.038(0.010)	98.7(1.5)
Uncovered Stent (1 35)	95.0(3.4)	97.4(1.9)	0.41(0.37)	0.037(0.011)	0.068(0.014)	0.040(0.011)	98.5(0.9)
Blood Clot (66)	92.7(5.2)	96.1(3.0)	0.45(0.45)	0.041(0.012)	0.071(0.021)	0.044(0.014)	97.9(2.0)

Compare with related works

Case (Numbers)	JSC	DSC	MADA	ASSD	Hausdorff	RMSSSD	ACC
Wang (2010)	Х	97.0	х	х	0.07(0.05)	Х	х
Unal (2010)			0.11				
Tung (2011)		97.0					
Tsantis (2012)	93.8						
Ughi (2015)		97.0					
Macedo (2016)	94.7	97.3	0.19		0.15(0.09)	0.040	99.0
Our Algorithm	95.4	97.6	0.27	0.033(0.007)	0.06(0.01)	0.036	98.9(1.2)

IVOCT 영상을 위한 3차원 시각화 알고리즘


- 혈관 내강과 스텐트 스트럿을 전자동으로 검출한 후 혈관과 스텐트 스트럿을 2차원 및 3차원으로 시각화
- Uncovered stent의 위치를 분석하는 알고리즘을 고안
- 삼차원 시각화의 결과는 임상의가 동맥 내에서 스텐트의 상태를 더 잘 이해할 수 있도록 도움
- 빠른 시간 내 예방 영역에서 우려 영역을 정의하는데 사용
- 스텐트 상태와 부작용에 대한 조기 판독을 보조

전자동 혈관 내강 분할 및 정상/비정상 분류 알고리즘

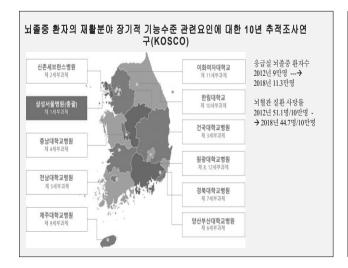
- 알고리즘은 다양한 혈관 내강 케이스를 효과적이고 정확하게 분할
- 높은 정확도로 정상/비정상 혈관 내강을 분류
- 형상 특징과 질감 특징을 RF 방법으로 학습시켰을 때 높은 정확도의 정상/비정상 혈관 분류 성능 확보
- 정확한 양적 정보와 짧은 시간 내에 비정상 혈관 내강에 대한 경고 신호를 제공
- 과도한 업무 부담 감소 및 판독 결과를 보조하여 조기진단 및 향후 발생할 수 있는 부작용 감소 기대

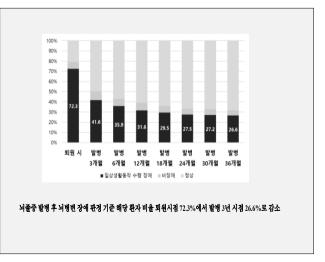
Conclusion

- IVOCT 영상 내에서 혈관 내 스텐트 스트럿의 배치 여부를 분석하는 것은 매우 중요
- Uncovered stent struts 자동 검출, 혈관의 두께와 스텐트의 배치 여부를 3차원으로 시각화하는 알고리즘 개발
- IVOCT 영상의 영상처리 과정은 uncovered stent, 가이드 와이어의 그림자, 혈전 등 고려해야할 부분이 많음
- 이러한 문제를 해결하기 위해 본 연구에서는 다양한 케이스의 혈관 내강을 분할할 수 있는 강력한 전자동 혈관 내강 분할 알고리즘을 제안
- IVOCT를 위한 컴퓨터 보조 진단 알고리즘 개발을 위해 전자동으로 분할한 혈관 내강의 형상 특징과 질감 특징을 분석하여 정상 또는 비정상 영상으로 분류 방법을 제안

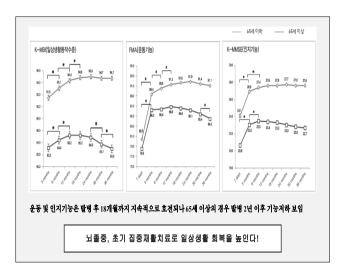
Stroke rehabilitation at present, and in the future

김 수 아


순천향대학교 천안병원 재활의학과

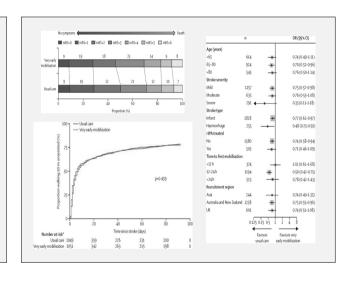

STROKE REHABILITATION AT PRESENT, AND IN THE FUTURE

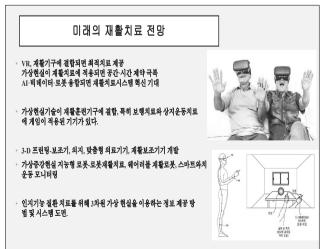
Soonchunhyang University
Cheonan
Physical medicine and Rehabilitation
Soo A Kim, MD, Ph D

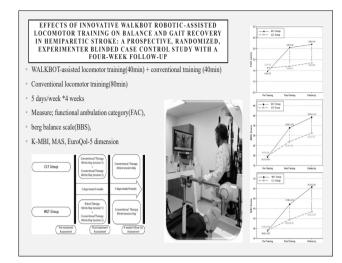

질병관리청 보도참고자료 2020.10.29

- ◇ 뇌졸중 재활 장기추적조사 연구를 통하여 뇌졸중 환자의 일상생활 회복에 영향을 미치는 요인 발표
- ◆ 뇌졸중 초기의 집중재활치료 여부가 일상생활동작 수행에 유의한 영향을 미치며, 뇌 졸중 이후 사회생활은 직업재활 및 재운전 교육으로 가능
- ♦ 뇌졸중 환자의 일상생활 회복을 높이기 위해서 초기 집중재활치료 강조

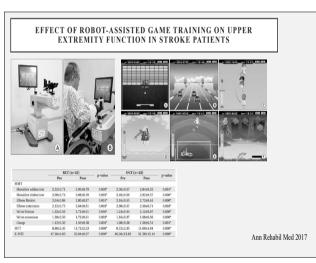
Symposium I: Interdisciplinary session

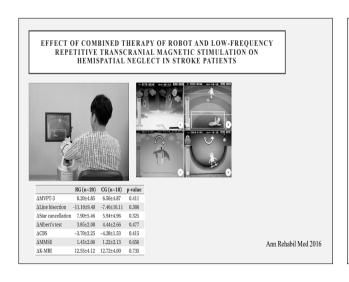


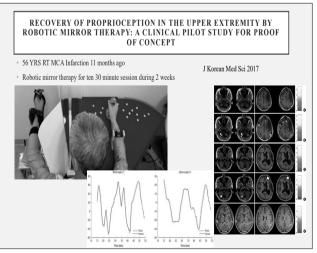

EFFICACY AND SAFETY OF VERY EARLY MOBILISATION WITHIN 24 H OF STROKE ONSET (AVERT): A RANDOMISED CONTROLLED TRIAL


- Total 2104 pts recruited 2006 to 2014
- large multicenter/intercontinental patient population
- * 5 countries in 3 continents (Australia/New Zealand, Europe, and Asia),56 acute stroke units
- very early mobilization(VEM) within 24 hours after symptom onset with usual care in patients with ischemic or hemorrhagic stroke without significant coexisting comorbidity or premorbid disability
- Measure; mRS score 3 months after stroke, 50m walking,
- * >18 yr, admit to stroke unit within 24h of stroke onset
- (1) begin within 24 h of stroke onset; (2) focus on sitting, standing, and walking (ie, out-of-bed) activity; and (3) result in at least three additional out-of-bed sessions to usual care
- At 3 months, fewer pts ini VEM group had favourable outcome
- $^{\circ}$ Poorer outcomes c VEM in pts c severe stroke and ICH but not statistical significance(p>0.05)

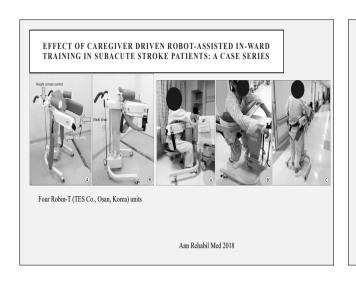
The Lancet 2015

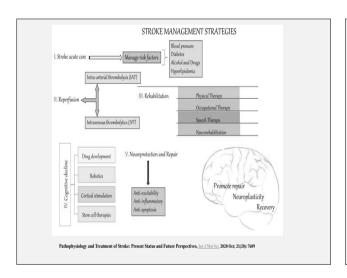


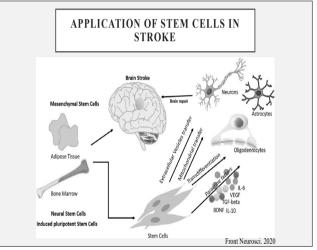




- Effects of Walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia, Neurorehabiliation 2018
- Effects of Innovative WALKBOT Robotic-Assisted Locomotor Training on Balance and Gait Recovery in Hemiparetic Stroke: A Prospective, Randomized, Experimenter Blinded Case Control Study With a Four-Week Follow-Up, IEEE Trans Neural Syst Rehabil Eng. 2015
- Comparative effects of robotic-assisted gait training combined with conventional physical therapy on paretic hip joint stiffness and kinematics between subacute and chronic hemiparetic stroke, Neurorehabiliation 2018
- Comparisons between Locomat and Walkbot robotic gait training regarding balance and lower extremity function among non-ambulatory chronic acquired brain injury survivors, Medicine (Baltimore), 2021
- Effects of trunk stabilization training robot on postural control and gait in patients with chronic stroke: a randomized controlled trial, Int J Rehabil Res 2020




Symposium I: Interdisciplinary session



THE EFFECTS OF VIRTUAL REALITY TRAINING ON FUNCTION IN CHRONIC STROKE PATIENTS: A SYSTEMATIC REVIEW AND META-ANALYSIS

- Objective: The aim of this study was to perform a meta-analysis to examine whether virtual reality (VR) training
 is effective for lower limb function as well as upper limb and overall function in chronic stroke patients.
- Methods: Three databases, OVID, PubMed, and EMBASE, were used to collect articles. The search terms used
 were "cerebrovascular accident (CVA)," "stroke", and "virtual reality". Consequently, twenty-one studies were
 selected in the second screening of meta-analyses. The PEDro scale was used to assess the quality of the selected
 studies.
- Results: The total effect size for VR redabilitation programs was 0.440. The effect size for upper limb function
 was 0.431, for lower limb function it was 0.434, and for overall function it was 0.545. The effects of VR
 programs on specific outcomes were most effective for improving muscle tension, followed by muscle strength,
 activities of duity living (ADL), joint range of motion, gait, balance, and kinematics.
- Conclusion: The VR training was effective in improving the function in chronic stroke patients, corresponding to a moderate effect size. Moreover, VR training showed a similar effect for improving lower limb function as it did for upper limb function.

Biomed Res Int 2019

Country and year	Study design	Sample size	Stroke type	Cells from	Interventional type	Route of administration	Dose	Time point from enset of infusion	Followup (Months)	Primary outcome indicator	References
South Korea, 2013	Open-label, observer-blinded clinical trial	16/36		Posterior liac crest	MSCs, Conventional Treatment	Intravenous	50 × 10 ⁶	7 days	60	mPS	Lee J. S. et al., 2010
Spain, 2012	Single-blind controlled clinical trial phase VV	1010	Subscute	Posterior superior liac crest	BM-MNCs. Conventional Treatment	Intraorterial	159 × 10 ⁵	Mean 5-9 days post occurrence of stroke	6	NHSS, BI, mPS	Moniche et al., 2012
Inda, 2012	Non-Randomized controlled dinical trial	12/12	Dhonic	Posterior superior liac crest	BM-MNCs, Conventional Treatment	intravenous	50-60 x 10 ⁶	3 months-2 years post-stroke	6	FMA, BI	Ehasin et al., 2012
Inda, 2013		20/20	Chronic	Post superior liac crest	MNC + MSCs	Intravenous	50-60 × 10 ⁶	3 months-2 years post-strole	6	BI, FMA	Bhasin et al., 2016
China, 2013		60/60	Chronic	Umblical cord	UC-MSOs	Suberachnoid + Intravenous	100×10^{6}	1 month and 6 years post-stroke	3	PMA	Huetal, 2013
Inda, 2014	Multicentric, phase II parallel group controlled dinical trial	60/90		Posterior Bac crest	BMSCs	Intravenous infusion	280.5 × 10 ⁶	7-30 days	6	NHSS, BI	Prasad et al., 2014
China, 2014	Randomized, single-blind clinical trial	15/15	Chronic	PBSOs	PBSCs	Stereotactic	$3\text{-8}\times10^6$	6-month-5 years	12	MHSS, mRS	Chen et al., 2014
Otina, 2014		50.50		Lianoring blood centers	UC-MSCs. Conventional treatment	Subarachnoid	100 × 10 ⁵	14-30 days post-stroke	3	NHSS,FWA	Feng et al., 2014
Spain, 2014	Phase Ia, Prospective, randomized, double-blind, placebo-controlled, single-center, pilot clinical trial.	20/20	Aoda	Adipose Issue	Allogenic MSCs from adipose fissue	Intravenous administration	1 millionunting. body weight	2 weeks post-stroke	24	mRS, NIHSS, MRI, Bochemical markers	Diez-Tejedor et al. 2014
USA, 2018	Phase I, Open label	10/10	Acute, contical ischemic stroke	Allogenic Umblical cord	Unbilical cord blood infusion	Intravenous administration	3.34×10^6	3-9 days	12	mRS	Laskowitz et al., 2018
USA, 2019	Phase I, Single arm-	25/30		Bone manow harvest (autologous)	B-MNOs	Intravenous administration	10 million cells/kg b, wt.	1-3 days	24	mRS, NHSS	Validy et al., 2019
Otina, 2019	Cohort (Phase I)	9		Cells derived from human fetal spinal cord		Intracerebral injection	Cohort A = 1.2×10^7 Cohort B = 2.4×10^7 Cohort C = 7.2×10^7	Mean 494 days	24	CT, IMRIL PET, OTI	Zhang et al., 2019
California, 2019	Phase III Proliminary safety and efficacy studies	Phase I (n = 15) Phase II (n = 21)	Chronic		Alogeneic Ischemia tolerant MSCs	Intravenous transfusion	Phase I (0.5, 1.0, and 1.5 million/kg b.wl) Phase II 1.5 million/kg b.wl		12	BI, EOG, CT-Scan.	Lary et al., 2019

THANK YOU

The 15th Annual Summer Conference on Endovascular Neurosurgical Therapy

ASCENT 2021

Theme: Exploring What is Next in Neuroendovascular Surgery

6/25(Fri.)

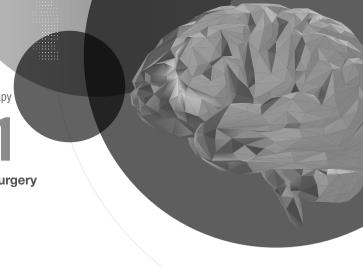
인문학 특강

좌장: 윤석만(순천향대)

아름다움으로 채우는 일상

윤광준(작가)

아름다움으로 채우는 일상


윤 광 준

작가

- * 고흐를 치료했던 의사 레 페릭스의 실수, 거저 줘도 못 챙긴 600억원
 - : 무지로 그림의 가치를 몰랐던 한 의사의 사례에서 아름다움을 보는 안목과 가치의 환기
- * 뭐가 아름다운지 좋은 게 뭔지 아는 게 교양이다
 - : 진정 소중한 것은 저절로 알아지지 않는다. 아름다움의 실체를 향해 다가서는 노력과 지속의 힘
- * 알려고 하지말고 느껴라
 - : 스탕달 신드롬을 경험했다면 예술의 세계로 이미 들어간 셈.
- * 음악과 미술 제대로 듣고 보려면
 - : 딥 리스닝의 필요, 저만의 감동으로 그림이 다가오려면
- * 살아보니 질리지 않는 놀이는 예술밖에 없더라.
 - : 허망하지 않은 삶을 위하여

Theme: Exploring What is Next in Neuroendovascular Surgery

6/25(Fri.)

Free paper II: Agony Session (Complication cases)

좌장: 김태선(전남대) / 장철훈(영남대)

FP2-1	Fatal complication of procedural rupture in unruptured cerebral aneurysm	진성철 (인제대학교 해운대백병원)
FP2-2	A case of delayed rebleeding following ruptured anterior communicating artery aneurysm embolization	이성호 (순천향대학교 천안병원)
FP2-3	Delayed rebleeding from ruptured broad-neck posterior communicating artery aneurysm after double-stent assisted coil embolization	정연구 (성균관대학교 강북삼성병원)
FP2-4	A case of segment occlusion after treatment with a pipeline endovascular device in dissecting aneurysm on dominant VA	김 창현 (양산부산대학교병원)
FP2-5	Direct carotid cavernous fistula after pipeline implantation for a symptomatic large cavernous internal carotid artery aneurysm	반승필 (분당서울대학교병원)
FP2-6	Superior sagittal sinus occlusion due to probable thrombocytopenic thrombosis after AstraZeneca COVID-19 Vaccination	최선웅 (가톨릭대학교 부천성모병원)
FP2-7	Acute management of latrogenic vertebral artery dissection during treatment of proximal vertebral artery stenosis	하상우 (조선대학교병원)

Fatal complication of procedural rupture in unruptured cerebral aneurysm

Sung-Chul Jin, Hyungon Lee

Department of Neurosurgery, Inje University, Haeundae Paik Hospital

Objective: Peri-procedural management of procedural rupture can be cardinal in the clinical outcome of the patient with procedural rupture. we presented our painful case of procedural rupture to inform our colleagues of neurointerventionists as to cardinal critical points of peri-procedural management after procedural rupture.

Methods: 47 female patient with growth of right pcoma aneurysm based on serial CT angiography was decided to be treated with coil embolization of intentional packing of bleb like lesion.

Result: procedural ruptured was ceased after about 1 hour of coil packing with double stenting (initial atlas plus LVIS junior). NIOM monitoring showed recovery of MEP and improvement of SSEP. we decided to perform EVD for control of IICP. additionally, we sedated the patient for control of IICP. we hesitated to use antiplatelet medication. about 12 hours after coiling, Rt pupil of the patient was dilatated and brain CT showed low density of Rt hemisphere. Decompressive craniectomy was performed to relieve IICP of the patient. Clinical status of the patient remained moribund.

Conclusion: Antiplatelet medication and careful monitoring of the patient with procedural rupture without sedation can be critical in double stenting assisted coiling of procedural rupture.

A case of delayed rebleeding following ruptured anterior communicating artery aneurysm embolization

Sung-Ho Lee, Jae-Sang Oh, Seok-Mann Yoon

Department of Neurosurgery, Soonchunhyang University Cheonan Hospital

Objective: A 76-year-old female was presented with HHG 3 SAH. Cerebral angiogram showed two aneurysms, which were ruptured lobulated a-com (7.6x13mm with 7.2mm neck) and unruptured right p-com (4.3x5.1mm with 4.5mm neck) aneurysms.

Methods: A-com aneurysm coil embolization was performed with stent assisted technique. However, because contralateral A2 orifice could not be protected by stent, and TE event occurred after stent deployment, intentional partial occlusion of ruptured part was done. Fortunately, left ICA occlusion was recanalized with stent retriever thrombectomy. She recovered well without neurological deficit.

Result: One year later, retreatment of a-com coil compaction as well as unruptured p-com aneurysm coiling were performed without difficulty. However, she was presented with semicomatose consciousness 17 months after 2nd embolization. Brain CT showed thick SAH and IVH. Coil embolization was performed again. Bilateral access to anterior cerebral artery was tried to place stent from contralateral A2 to A1, but failed. Thus, further coil packing was done with double catheter technique. Raymond 3 obliteration was achieved.

Conclusion: Partial coil embolization of ruptured aneurysm may not protect aneurysm rerupture. Frequent follow up and retreatment should be considered.

Delayed rebleeding from ruptured broad-neck posterior communicating artery aneurysm after double-stent assisted coil embolization

Yeongu Chung

Department of Neurosurgery, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital

Objective: Stent-assisted coil embolization for the ruptured aneurysm without pre-medication of antiplatelet agents can cause thrombus formation during the procedure. Incomplete coil embolization is inevitable in cases of large thrombus interfere the visualization around the aneurysmal neck.

Methods: Broad-based irregular shaped posterior communicating artery ruptured aneurysm was found from a 56-year-old female patient admitted with altered mentality after severe headache. Initial computed tomography scan revealed the diffuse and thick subarachnoid hemorrhage with Fisher grade IV. The width of aneurysmal neck was 6mm and the height was 3.5mm. After partial deployment of frame coil, stent-assisted coil embolization with Enterprise stent was performed. During the filling of the aneurysmal sac, large filling defect was confirmed at the distal portion of the aneurysm. Intra-arterial tirofiban was injected and near-total resolution of the thrombus was confirmed. And 2 more coils were inserted and additional stent (Neuroform Atlas) was deployed. Final angiogram revealed the no filling of the ruptured aneurysm. And the patient was recovered the mental status despite of severe vasospasm during the post-operative 2 weeks. After that, dual-antiplatelet agents was maintained and keep blood pressure higher than normal.

Result: The patient showed sudden drowsiness and neurologic deterioration with monoparesis of left upper extremity at post-operative 17 days. Computed tomography scan revealed the newly developed subarachnoid hemorrhage suspicious rebleeding from the previous coiled aneurysm. Emergent coil embolization was performed with 4 coils. Her monoparesis was improving and when post-operative 34 days from the initial embolization, the patient underwent lumbar drainage due to hydrocephalus

Conclusion: Thrombo-embolic complications are not rare for emergent stent deployment in cases of the patient did not administered with antiplatelet premedication. It is important to prompt administration of dual-antiplatelet agents as soon as the ruptured aneurysm is secured. If the distal flow is intact, it is essential to make an effort to achieve additional sufficient coil compaction for ruptured aneurysm.

A case of segment occlusion after treatment with a pipeline endovascular device in dissecting aneurysm on dominant VA

<u>Chang Hyeun Kim</u>, Young Ha Kim, Sang Weon Lee, Chi Hyung Lee, Soon Ki Sung, Dong Wuk Son, Geun Sung Song

Department of Neurosurgery, Pusan National University Yangsan Hospital

Objective: Vertebral artery dissecting aneurysm (VADA) is a very rare subtype of intracranial aneurysms associated with significant higher rates of morbidity and mortality when ruptured. Although there have been many discussions and reports of VADAs, the optimal treatment method has not yet been clearly established. Recently, with the development of endovascular devices, treatment case using flow diverter devices (FDD) such as Pipeline Embolization Device (PED; Medtronic Inc., Minneapolis, Minnesota, USA), Flow Redirection Endoluminal Device (FRED; Microvention, Aliso Viejo, California, USA) and Surpass Flow-Diverter (Surpass; Stryker Neurovascular, Fremont, CA, USA) have been reported.

Methods: A 54-year ole male patient visited the outpatient clinic due to abnormal finding on the MRAs. His first headache occurred 6 months ago, and there was dissecting aneurysm on the right V4 segment in MRI performed at a local hospital. But the local hospital could not diagnose the lesion. 6 months later, the patient re-visit that hospital due to mild headache, and again taken an MRI and MRA. At that time, the local hospital discovered the lesion, and the size of the dissection segment increased, so the local hospital was referred to our hospital.

Result: We considered the young age of the patient and the lesion of the dominant vertebral artery. It was decided to use FDD as the treatment for the lesion. The procedure was performed successfully, and after 10 minutes, DSA was not able to finding any remarkable finding. Immediately after the procedure and during the admission period, the patient did not complain of neurological symptoms. The patient said that the intermediate headache was also improved in the outpatient clinic. In conventional angiography performed 4 months later, it was confirmed that the entire parent artery where deployed FDD was occluded. Fortunately, the retrograde flow through fetal-type PCoA provide sufficient blood supply to the basilar artery and cerebellar arteries

Conclusion: FDD can be a good treatment option for treatment of un-ruptured vertebral artery dissecting aneurysm, but should be used after sufficient consideration of the whether or not dominant VA, branching artery and exact location of deployment of the device.

Direct carotid cavernous fistula after pipeline implantation for a symptomatic large cavernous internal carotid artery aneurysm

Seung Pil Ban, O-Ki Kwon, Young Deok Kim, Jang Hun Kim

Department of Neurosurgery, Seoul National University Bundang Hospital

Objective: Implantation of flow diverting stents such as Pipeline embolization device (PED) has become an alternative treatment option for large or giant aneurysms. Delayed aneurysm rupture is a rare complication of PED implantation. In the cavernous internal carotid artery (ICA), this complication can lead to a direct carotid cavernous fistula (CCF).

Methods: We present a case of CCF resulting from delayed aneurysmal rupture following PED implantation.

Result: A 66-year-old woman complained of diplopia due to a right incomplete cranial nerve (CN) III palsy. The patient was diagnosed with a 17.4 mm in diameter right cavernous ICA aneurysm. A 4.75X25 mm PED was successfully deployed across the aneurysm neck without complications. The patient had an uneventful course, and the patient was discharged 5 days post-implantation. Two weeks later, the patient returned for the scheduled out-patient clinic. At this time, the patient presented with a worsening right CN III palsy, headaches, and tinnitus. Follow-up images demonstrated interval development of a direct CCF because of delayed rupture of the aneurysm that had been treated with PED. Successful transvenous coil embolization of both the aneurysm sac and fistula point was performed.

Conclusion: This case demonstrates that transvenous embolization can be used for treating CCF after PED implantation. In addition, although the risk of CCF occurrence after PED implantation is low, the operators should be mindful of this risk.

Superior sagittal sinus occlusion due to probable thrombocytopenic thrombosis after AstraZeneca COVID-19 Vaccination

Seon-Woong Choi, Seong-Han Kim, Hoon Kim, Seong-Rim Kim

Department of Neurosurgery, Bucheon St. Mary's Hospital, The Catholic University of Korea

Objective: The authors report a case of superior sagittal sinus occlusion after Astra Zeneca COVID-19 vaccination.

Methods: A 32-year-old male presented with right hemiparesis and drowsy mentality. 12 days ago, the patient was vaccinated against COVID-19. Initial platelet count was 14,000/micro L. CT revealed subcortical ICH of the left cerebral hemisphere. MR venogram showed occlusion of the superior sagittal sinus.

Result: Immunoglobulin was administered to modulate the immune response. Intravenous heparin and transfusion was prohibited for the risk of exacerbation of thrombocytopenic thrombosis. Despite intravenous mechanical thrombectomy of the superior sagittal sinus, venous infarction and subsequent brain edema was rapidly getting worse than expected.

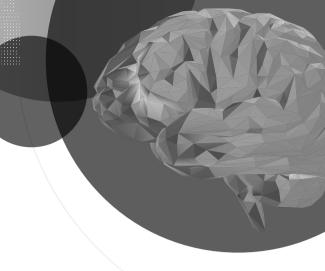
Conclusion: Superior sagittal sinus occlusion with thrombocytopenic thrombosis after Astra Zeneca COVID-19 vaccination is a rare case but can be devastating. Early suspicion is mandatory.

Acute management of latrogenic vertebral artery dissection during treatment of proximal vertebral artery stenosis

Sang-woo Ha


Department of Neurosurgery, Chosun University Hospital

Objective: To review the point of caution in the management of proximal VA stenosis involving the ostium.


Methods: A 82-year-old male patient was referred to us from a regional hospital because of severe dizziness and right lower limb weakness. He was diagnosed with cerebellar infarction and was discharged 3 days before admission to our hospital. He was discharged admitted due to recurrent cerebellar infarct.

Result: CT angiography showed his left dominant proximal vertebral artery (VA) tandem stenosis involving VA ostium and MRI revealed multiple ischemic strokes newly appearing in the left posterior inferior cerebellar artery (PICA) territory. Due to recurrent attacks, we performed balloon angioplasty and stenting. Follow up angiography showed VA dissection and multiple stenting was done successfully.

Conclusion: This case report aims to review the point of caution in the management of proximal VA stenosis involving the ostium.

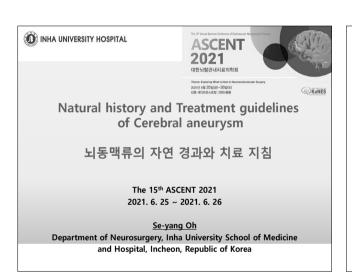
Theme: Exploring What is Next in Neuroendovascular Surgery

6/25(Fri.)

Satellite symposium for nurses and technicians

좌장: 김태곤(차의과학대) / 심숙영(인제대)

1. Natural history and treatment guidelines of cerebral aneurysm


2. Endovascular treatment of cerebral aneurysm 김대원(원광대)

3. Perioperative care of cerebral aneurysm 고정호(단국대)

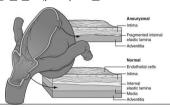
Natural history and treatment guidelines of cerebral aneurysm

오세양

인하대학교병원 신경외과

뇌동맥류의 자연 경과 : 뇌동맥류의 형성

뇌동맥류의 형성


- 뇌동맥류의 유병률 : 전 인구의 3~5%
- 뇌동맥류 파열의 유병률 : 연간 10만 명당 10~11명
- 심각한 뇌출혈 (뇌지주막하출혈, subarachnoid hemorrhage, SAH)의 원인 질환
 - 뇌졸중의 5~15%
- 40~60세 연령층에서 가장 많이 진단됨
- 여성에서 더 흔하다 (1.5~2배)

뇌동맥류의 형성

- 두개강내 혈관의 정상적인 구조
 - 내막 (tunica intima)
 - 내탄성판 (internal elastic lamina)
 - 중막 (tunica media)
 - 외막 (tunica adventitia)
 - 두개강외 혈관과 달리 중막과 내막이 덜 발달되어 있다

뇌동맥류의 형성

- 낭성 뇌동맥류의 조직 구조
 - 내탄력층 (internal elastic lamina)의 손상 혹 은 소실
 - 중막 (tunica media)의 약화 혹은 소실: 중막층 내의 평활근 세포의 소실

뇌동맥류의 형성

- 1. 혈류역학적 (hemodynamic) 요인
 - 혈관벽의 지속적인 혈류역학적 긴장이 가해짐
 - 뇌동맥의 연결부 (junction)
 - 뇌동맥의 분지부 (bifurcation)
 - 뇌동맥의 급격한 각도의 변화를 보이는 부위
 - Wall shear stress (WSS)가 강력히 작용하는 부위
 - WSS의 변화가 심한 부위

뇌동맥류의 형성

- 2. 혈관내피의 기능 이상 (Endothelial dysfunction)
 - WSS에 의해 혈관내피의 기능이상과 혈관벽의 염증 반응 및 remodeling이 촉발
 - 혈류역학적 긴장 -> 혈관내피의 기능이상이 동맥류의 가장 초기 병인 -> 동맥벽
 이 염증 반응
- 3. 동맥벽의 염증 반응 (inflammatory response)
 - 염증 반응에 의해 평활근 세포의 사멸이 발생
 - 다양한 염증 세포: 대식 세포, 비만 세포 등
 - Cytokine: IL-1b, TNFa 등
 - 활성 산소 (reactive oxygen speices)
 - 유전자 발현

뇌동맥류의 형성

- 4. 유전적 요인
 - 뇌동맥류의 발생률이 1명의 발병자가 있는 직계에서 2배 (4%), 2명의 이환이 있는 경우 3배 (8%)의 유병률을 보임
 - 결합 조직 (connective tissue)와 관련된 유전 질환과의 연관성이 높다
 - 상염색체 우성 다낭신 (autosomal dominant polycystic kidney disease)
 - Ehlers-Danlos 증후군
 - Marfan 증후군
 - Fibromuscular dysplasia

뇌동맥류의 형성

- 5. 일반적인 위험 인자
 - _ 가족력
 - _ 여성
 - -고령
 - 고혈압
 - 흡연
 - 음주

뇌동맥류의 자연 경과: 뇌동맥류의 성장과 파열

낭성 뇌동맥류의 자연 경과

- 검진 목적, 혹은 경증 증상에 대해 시행한 CT angiography 또 는 MRA에서 우연히 발견된 뇌동맥류의 운명은?
- 동맥류는 모두 위험한가?
- 위험하지 않은 뇌동맥류는 무엇인가?
- 뇌동맥류가 파열로 진행하는 위험 요인은 무엇인가?

낭성 뇌동맥류의 자연 경과

- ISUIA (International Study of Unruptured Intracranial Aneurysm)

 - 1998년 12월 발표 (1차) 미국, 캐나다, 유럽의 53개 센터 2621명 대상 8.3 년간 추적 조사

 - 10 mm 미만의 뇌동맥류
 - 뇌지주막하출혈 병력 있는 경우 그렇지 않은 경우에 비해 11배의 파열 위험성 (연 0.5%)
 - 10 mm 이상의 뇌동맥류
 - 뇌지주막하출혈 병력과 관계 없이 연간 1% 정도의 파열 위험성
 - 25 mm 이상의 뇌동맥류
 - 첫해 파열율 6%
 - 선택 편향의 문제가 있었음: 파열 위험성이 낮아 보존적 치료를 하기로 결정한 환자들이 선택됨
 - 10 mm이상 뇌동맥류의 파열 위험성이 높음을 첫 보고

낭성 뇌동맥류의 자연 경과

- ISUIA (International Study of Unruptured Intracranial Aneurysm)
 - 2003년 (2차)
 - 5년 누적 파열률
 - 7 mm 미만: 0%
 - 7~12 mm : 2.6%
 - 13~24 mm : 14.5% • 25 mm 이상 : 40%
 - 여전히 다른 연구결과에 비해 파열 위험성이 낮게 나타남
 - 선택 편향의 문제점 : 추적 도중 상당수의 환자가 수술 혹은 코일 색전 술 받음

낭성 뇌동맥류의 자연 경과

- UCAS (Unruptured Cerebral Aneurysm Study) Japan
 - 2012년 박표
 - 2001~2004, 3 mm 이상의 뇌동맥류를 가진 20세 이상의 5720명의 환자를 대상
 - 연간 파열위험성: 0.95%
 - 3~4 mm 크기를 기준으로 5~6 mm 는 1.13배, 7~9 mm는 3.35배, 10~24 mm 는 9.09배, 25 mm이상은 76.26배의 파열위험성을 보임.
 - 중대뇌동맥류를 기준으로 후방순환계는 1.9배, 전교통동맥 2.02배의 파 열위험성을 보임
 - Daughter sac이 있는 뇌동맥류는 1.63배의 위험성을 보임

낭성 뇌동맥류의 자연 경과

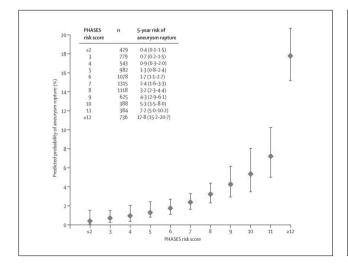
- · Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiograph
 - Vilablanca et al., 2013
 - 평균 2.24년 동안 258개의 비파열 뇌동맥류 중 18%가 성장
 - 이 중 4개 (1.8%, 평균크기 6.2 mm)가 파열됨
 - 성장한 동맥류의 파열률은 2.4%로 성장하지 않은 동 맥류의 연간 파열 위험성 0.2%에 비해 12배나 높음

낭성 뇌동맥류의 자연 경과

- 10년 이상의 장기 추적 결과
 - Juvela et al. 2013
 - 누적 파열률: 10년째 10.5 %, 20년째, 23.0%, 30년째 30.1%
- 5 mm 이하의 paraclinoid aneurysm
 - Jeon et al. 2014
 - 평균 35.4개월간 추적
 - 연간 파열 위험성 0.12%, 연 성장률 1.01%
 - 4mm 이상 고혈압, 다발성의 경우 성장 위험성이 높음

낭성 뇌동맥류의 자연 경과

- SUAVe (Small Unruptured Intracranial Aneurysm Verification) study Japan
 - Sonobe et al. 2010
 - 448개의 크기 5 mm 미만의 비파열성 뇌동맥류를 평균 41개월간 추적 관찰
 - 연평균 파열률 : 0.54%
 - 단일 동맥류 : 0.34% / 다발성 동맥류 : 0.95%
 - 50세 미만, 4 mm이상, 고혈압, 다발성 동맥류에서 유의하게 높은 파열 위험성을
 보임
 - 의의: 5 mm 미만의 작은 뇌동맥류에서도 충분히 파열 위험성이 있음


낭성 뇌동맥류의 자연 경과

- Natural history of unruptured intracranial aneurysm: A retrospective single center analysis
 - Byoun et al, 2016, Korea
 - 2000년~2008년 1339개의 동맥류를 추적 관찰, 7 mm 미만의 동맥류를 대상
 - 평균 크기 4.5 mm
 - 연간 파열 위험성 : 1%
 - Risk Factors: 동맥류의 크기, 뇌지주막하출혈 병력
 - 크기 7mm 미만이며 뇌지주막하출혈 병력이 없는 동맥류의 연간 파열 위험성:
 0.79%

낭성 뇌동맥류의 자연 경과

- 낭성 뇌동맥류의 연간 파열 위험성은 1~2%
- 파열의 위험성이 높은 인자
 - 동맥류의 크기 (클수록, 5 mm, 7mm이상)
 - 동맥류의 위치
 - 전교통 동맥 (anterior communicating artery)
 - 후방 순환계 (basilar, vertebral, SCA, PCA..)
 - 되지주막하출혈 (SAH) 과거력
 - 불규칙한 모양 : multilobarity, daughter sac
 - Dome-to-neck ratio
 - 다발성 동맥류, 유증상 동맥류, 성장하는 동맥류
 - 여성, 가족력, 관련된 유전병, 흡연, 음주

Parameter and poin	ts	n		
Population	0: North American, European	99		
	3: Japanese	1		
	5: Finnish	0		
Hypertension	0: no	59		
	1: yes	31		
Age	0: < 70 years	85		
	1: ≥70 years	15		
Size of aneurysm	0: < 7.0 mm	66		
	3: 7.0-9.9 mm	18		
	6: 10.0-19.9 mm	14		
	10: > 20 mm	2		
Earlier SAH	0: no	99		
	1: yes	1		
Site of aneurysm	0: ICA	10		
	2: MCA	14		
	4: ACA/Pcom/PC	76	I	
5-year absolute risk	of rupture	т Т	Ì	
\leq 2 points: 0.4%	3 points: 0.7%	4 points: 0.9% 1		
5 points: 1.3%	6 points: 1.7%	7 points: 2.4%	9	
8 points: 3.2%	9 points: 4.3%	10 points: 5.3% ************************************		
11 points: 7.2%	≥12 points: 17.8%			

뇌동맥류의 치료 지침

비파열뇌동맥류의 치료 지침

- Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms
 - 2015년 Stroke지에 발표
 - Stroke. 2015:46:2368-2400
 - AHA (American Heart Association) / ASA (American Stroke Association)
 - 가장 최근의 guideline

비파열뇌동맥류의 치료 지침

- 동맥류의 생성과 성장, 파열의 위험 인자에 대한 권고
 - 1. 흡연은 비파열뇌동맥류 생성의 위험을 증가시키므로, 비파열뇌동맥류 환자는 금연의 중요성에 대한 상담을 받아야한다. (Class I; Level of Evidence B)
 - 2. 고혈압은 뇌동맥류의 성장과 파열에 중요한 역할을 하므로, 비파열뇌동맥류 환자는 혈압 감시를 반드시 해야 하고, 고혈압 치료를 받아야 한다. (Class I; Level of Evidence B)
 - 3. 동맥류의 성장은 파렬의 위험성을 높이므로 비파열뇌동 맥류를 보존적으로 관찰하는 환자의 경우 정기적인 추적 검사가 고려되어야 한다. (Class I: Level of Evidence B)

비파열뇌동맥류의 치료 지침

- 임상 양상에 대한 권고
 - 1. 동맥류 파열에 의한 뇌지주막하출혈 환자는 동시에 존재하는 비파열뇌동맥류에 대한 평가가 반드시 이루 어져야 한다. (Class I; Level of Evidence B)
 - 2. 동맥류가 원인이 되어 발생한 뇌신경마비를 보이는 환자의 뇌동맥류는 조기 치료의 적응증이다. (Class I; Level of Evidence C)
 - 3. 허혈성뇌혈관질환의 예방을 위한 비파열뇌동맥류 치료의 효용성은 불확실하다. (Class Ilb; Level of Evidence C)

비파열뇌동맥류의 치료 지침

- 진단과 영상검사에 대한 권고
 - 1. DSA는 수술적 혹은 혈관내치료가 고려되는 뇌 동맥류의 진단 및 평가에 있어 비침습적 영상검사 에 비해 유용하다. (Class IIa; Level of Evidence B)
 - 2. DSA는 치료된 뇌동맥류의 추적 검사에 있어 가장 민감도가 뛰어나다. (Class I; Level of Evidence C)
 - 3. CTA와 MRA는 비파열뇌동맥류의 발견과 추적 관찰에 유용하다. (Class I; Level of Evidence B)

비파열뇌동맥류의 치료 지침

- 진단과 영상검사에 대한 권고
 - 4. 치료된 뇌동맥류의 추적 검사를 위해 MRA를 시행하는 것은 적절하고, 치료 결정을 위해 DSA의 시행이요구된다. (Class IIa; Level of Evidence C)
 - 5. Wider neck/dome diameter 형태의 코일이 시행된 뇌동맥류가 residual filling을 보이는 경우 반드시 추 적 검사를 하여야 한다. (Class I; Level of Evidence B)
 - 6. 재발 위험성이 높지 않은 비파열뇌동맥류의 혈관내 치료 후 영상검사의 중요성은 불분명하나, 영상 검사 는 대개 필요하다. (Class lia; Level of Evidence C)

비파열뇌동맥류의 치료 지침

- 선별 검사(screening)에 대한 권고
 - 1. 직계 가족 중 뇌동맥류 혹은 뇌지주막하출혈의 병력이 있는 자가 2명 이상일 경우 CTA 또는 MRA를 통한 동맥류 선별 검사 가 제안된다. 직계 가족에서 뇌동맥류 발생의 위험성이 높은 요 인에는 고혈압, 흡연, 여성이 포함된다. (Class I; Level of Evidence B)
 - 2. 상염색체우성 다낭신증후군 환자의 경우 특히 뇌동맥류 가족 력이 있는 경우, CTA 또는 MRA를 통한 선별 검사가 제안된다. (Class I; Level of Evidence B) 대동맥축착증 (coarctation of the aorta)과 microcephalic osteodysplastic primordial dwarfism환 자의 경우 CTA 또는 MRA 검사를 받는 것이 합리적이다. (Class lla; Level of Evidence B)

비파열뇌동맥류의 치료 지침

- 자연 경과 (Natural History)에 대한 권고
 - 1. 이전의 동맥류성 뇌지주막하출혈 병력은 다른 작은 비 파열뇌동맥류에 의해 2차적으로 발생하는 새로운 뇌출혈 의 독립적 위험인자로 고려된다. (Class IIb; Level of Evidence B)
 - 2. 추적 관찰 기간 동안의 뇌동맥류의 크기 증가 변화가 있는 환자는 치료에 대한 금기 질환이 없다면 반드시 치료받아야 된다. (Class I; Level of Evidence B)
 - 3. 뇌동맥류의 가족력이 있는 비파열뇌동맥류 환자는 동맥류가 작은 크기라 할지라도 치료하는 것이 합리적이다.
 (Class IIa; Level of Evidence B)

비파열뇌동맥류의 치료 지침

- 결찰 수술 (Surgical clipping)에 대한 권고
 - 1. 비파열 뇌동맥류의 치료를 위한 결찰 수술을 고려할 때, 환자의 연령, 동맥류의 위치 및 크기 등의 요인을 고려하여야 한다. (Class I: Level of Evidence B)
 - 2. 완전 제거와 불완전 제거 여부에 따라 수술 후 동맥류의 성장 및 재출혈의 위험도가 달라지므로 동맥류 제거 여부를 기록할 수 있는 수술 후 영상 검사가 권고된다. (Class I; Level of Evidence B)
 - 3. 동맥류의 재발 혹은 새로운 동맥류 발생의 의 위험성이 있으므로 결찰 수술 후에도 장기간의 추적 영상검사가 고려된다. 장기 추적 검사는 완전 결찰이 이루어지지 않은 동맥류의 경우 특히 중요하다. (Class Ilb; Level of Evidence B)

비파열뇌동맥류의 치료 지침

- 결찰 수술 (Surgical clipping)에 대한 권고
 - 4. 비파열뇌동맥류의 수술적 치료는 수술 건수가 많은 병원 (연간 20건 이상)에서 받는 것이 권고된다. (Class I; Level of Evidence B)
 - 5. 수술 중 vessel compromise 또는 residual aneurysm을 피하기 위해 특화된 intraoperative tool & technique의 사용은 비파열뇌동맥류 수술 후 불량한 결과를 감소시키기 위해 고려된다.
 (Class IIb; Level of Evidence C)

비파열뇌동맥류의 치료 지침

- 혈관내 치료 (Endovascular treatment)에 대한 권고
 - 1. 혈관 내 혈류전환 (Endoluminal flow diversion)은 주의 깊게 선택된 case에서 고려된다. (Class IIb; Level of Evidence B)
 - 이 외의 비파열뇌동맥류 치료에 있어 새로 소개되고 있는 기술도 주의 깊게 선택된 cases에서 고려된다. (Class IIb; Level of Evidence C)
 - 새로운 치료법의 장기적인 효과는 대부분 알려져 있지 않다. 추가적인 trial data에서 기존의 치료보다 안전성과 효용성에서 더 우월한 발전이 입증될 때까지 FDA의 지침을 지켜야 한다. (Class Ila; Level of Evidence C)

비파열뇌동맥류의 치료 지침

- 혈관내 치료 (Endovascular treatment)에 대한 권고
 - 2. Coated coil의 사용은 bare-metal coil에 비해 이득이 없다. (Class IIa; Level of Evidence C)
 - 3. 비파열뇌동맥류의 혈관내 치료는 치료 건수가 많은 병원 (high-volume centers)에서 받는 것이 권고된다. (Class I; Level of Evidence B)
 - 4. 방사선 노출에 의한 시술 위험성은 혈관내치료
 의 동의 과정에서 명확히 검토되어야 한다. (Class
 l; Level of Evidence C)

비파열뇌동맥류의 치료 지침

- 결찰 수술과 코일 색전술의 효용성 비교에 대한 권고
 - 1. 결찰 수술은 치료가 고려되는 비파열뇌동맥류의 효과적인 치료법이다. (Class I; Level of Evidence B)
 - 2. 혈관내 코일 색전술은 치료가 고려되는 선택된 비파열뇌동맥류의 효과적인 치료법이다. (Class IIa: Level of Evidence B)

비파열뇌동맥류의 치료 지침

- 결찰 수술과 코일 색전술의 효용성 비교에 대한 권고
 - 3. 치료가 고려되는 비파열뇌동맥류 환자는 혈관내 치료와 결찰 수술 방법 모두의 위험성과 이점에 대해 완전한 정보 를 제공받아야 한다. (Class I; Level of Evidence B)
 - 4. 코일 색전술은 선택된 cases에서 결찰 수술보다
 procedural morbidity & mortality가 낮으나 재발의 위험
 성이 결찰 수술보다 높다. (Class Ilb; Level of Evidence B)

비파열뇌동맥류의 치료 지침

- 치료받지 않은 동맥류 추적 관찰에 대한 권고
 - 1. 수술 혹은 혈관내 시술이 시행되지 않고 경과 관찰 중인 비파열뇌동 맥류 환자는 주기적인 MRA 또는 CTA 와 같은 추적 영상 검사가 적용된다. 추적에 권고되는 적절한 기간과 간격은 불명확하다. (Class I; Level of Evidence B)
 - 2. 수술 혹은 혈관내 시술이 시행되지 않고 경과 관찰 중인 비파열뇌동 맥류 환자는, 첫 발견 후 6~12개월 후에 추적 검사, 이어서 1~2년 간격 의 추적 검사를 하는 것이 합리적이다. (Class Ilb; Level of Evidence C)
 - 3. MRI검사를 받을 수 없는 경우가 아니라면 반복적인 장기 추적 검사를 위해 CTA 보다 TOF MRA검사를 고려하는 것이 합리적이다. (Class Ilb; Level of Evidence C)

Conclusions: Recommendations

- 비파열뇌동맥류의 적절한 치료를 위해 고려되는 요소 (Class I; Level of Evidence C)
 - 크기 (Size)
 - 위치 (Location)
 - 형태의 특징 (Morphological characteristics)
 - 연속적인 영상 검사상의 동맥류의 성장(Growth)
 - 연령 (Age)
 - 동맥류성 지주막하출혈의 과거력
 - 뇌동맥류의 가족력
 - 다발성 동맥류의 존재여부
 - 뇌출혈의 위험성을 높이는 뇌동정맥기형 또는 다른 뇌혈관질환 또는 유전성 질환의 유무

Conclusions: Recommendations

- 치료가 고려되는 비파열뇌동맥류 환자는 비파열뇌동맥류의 안전성 확보와 출혈 방지를 위한 혈관내 치료와 결찰 수술 방 법 모두의 위험성과 이점에 대해 완전한 정보를 제공받아야 한다. (Class I: Level of Evidence C)
- 비파열동맥류의 치료 결과는 low-volume centers가 우월하지 못하므로 higher-volume center에서 치료받는 것이 권고된다. (Class I; Level of Evidence B)

Conclusions: Recommendations

- 여러 나라 및 국제적 다기관 연구를 통한 다수의 전향 적, 후향적 연구 data를 통해
 - 내구성(낮은 재발률) : 결찰 수술이 우월함
 - 이환률, 사망률, 재원 기간, 치료 비용: 혈관내 치료가 우월 함
 - 선택적인 경우, 특히 결찰 수술의 위험성이 높은 기저동맥 첨부 (basilar apex)와 고령의 환자에서 혈관내 치료의 선택 은 합리적이다.
 - (Class IIb; Level of Evidence C)

Conclusions: Recommendations

• 비파열뇌동맥류환자의 치료 위험성은 고령, 동반 된 질환, 동맥류의 위치, 크기와 연관이 있다. 따라서 65세 이상의 고령이며 동반된 다른 질환이 있는 무증상의 비파열 뇌동맥류, 출혈 위험성이 낮은 위치, 크기, 모양, 가족력과 이외의 유의한 요인이 있는 경우 관찰 (Observation)은 합리적 인 대안이다. (Class Ilb; Level of Evidence B)

뇌동맥류 치료 지침 : 국내의 권고 사항

- 대한 뇌졸중 학회 (Korean Stroke Society)
- 2013년 발간

뇌동맥류 치료 지침 : 국내의 권고 사항

- 치료를 하지 않고 경과관찰을 결정한 경우, 고혈압치료와 금 연을 권고하며, 증상이 없더라도 주기적 영상 추적 검사를 권 고한다. (근거수준: III. 권고수준: B)
- 증상이 있는 비파열뇌동맥류는 치료가 원칙이다. 단, 동반된 내과적 병력이나 고령, 동맥류의 모양, 위치 등에 의해 치료의 위험성이 매우 높은 경우 이를 고려하여 치료 여부를 결정한 다. (근거수준: IIa, 권고수준: B)
- 증상이 없는 경막외뇌동맥류는 일반적으로 치료가 추천되지 않는다. (근거수준III. 권고수준B)

뇌동맥류 치료 지침 : 국내의 권고 사항

- 증상이 없는 비파열뇌동맥류는 치료의 위험도를 고려해 볼 때 환자의 여명이 약 10년 이상이면 다음과 같은 경우에 치료의 검토가 추천된다.
 - 1) 파열의위험도가상대적으로높은경우
 - ①크기가 5 mm이상(근거수준III, 권고수준B)
 - ②후방순환, 전교통동맥 및 후교통동맥 뇌동맥류(근거수준IIb, 권고수준B)
 - ③지주막하출혈 병력이 있는 환자(근거수준IIb, 권고수준B)
 - ④뇌동맥류의 가족력이 있는 환자(근거수준III, 권고수준B)
 - ⑤경과관찰 도중 크기의 증가나 모양의 변화가 있는 뇌동맥류(근거수준: IV, 권고수준: C)
 - ⑥50세 미만의 고혈압환자에서 다발성 병변이있을때(근거수준III, 권고수준B)
 - ⑦종횡비 (aspect ratio, 동맥류 정부의 크기에 대한 동맥류 높이의 상대적인 크기비율) 또는 크기 비 (size ratio, 모동맥 크기에 대한 동맥류의 상대적인 크기 비율)가 크거나 다엽성(multilobular) 또는 수포성(bleb) 변화를 보이는 뇌동맥류(근거수준비, 권교수준B)
 - 2) 환자가 비파열뇌동맥류 진단으로 한 불안, 우울증이 심할 경우(근거수준IV, 권고수준C)

뇌동맥류 치료 지침 : 국내의 권고 사항

- 비파열뇌동맥류가 발견된 경우, 환자의 나이, 동반질환, 건강상태 등 '환자 인자' 및 뇌동맥류의 크기, 위치 및 모양 등의 '병변 인자'를 고려하여 치료 여부를 결정을 하는 것이 권고된다. 또한 치료 방법은 병원의 시설 및 치료 성적도 고려하여 결정한다. 이러한 결정 과정에서, 환자 또는 환자 가족에게 충분한 설명을 한 후 고지된 동의를 받는 것이 필수적이다. (근거수준IV, 권고수준C)
- 비파열뇌동맥류의 치료 시 혈관내치료는 결찰술과 비교하여결과가 나쁘지 않으며, 치료위 험도와 재발률 등을 고려하여 치료 방법을결정한다. (근거수준Ib, 권고수준A)
- 비파열 뇌동맥류의 치료 후 장기간 경과관찰이 권고된다. 특히 혈관내치료 후에는 불완전 폐색이나 재개통 등을 확인하기위해 경과관찰을 하는 것이 권고된다. (근거수준IIb, 권고수 준B)

파열된 뇌동맥류 (동맥류성 뇌지주막하출혈)의 치료 지침

- Korean Clinical Practice Guidelines for Aneurysmal Subarachnoid
 Hemorrhage
 - 대한신경외과학회지 발표 (2018년)
 - J Korean Neurosurg Soc 61(2):127-166, 2018
 - AHA (American Heart Association) / ASA American Stroke Association)
 의 2012년 guideline, European Stroke Organization (ESO)의 2013년
 guideline, Japanese Society on Surgery for Cerebral stroke (JSSCS)의
 2008년 guideline을 토대로 제창

파열된 뇌동맥류 (동맥류성 뇌지주막하출혈)의 치료 지침

- 위험 요인에 대한 권고 사항 (근거수준III, 권고수준B)
 - 동맥류성뇌지주막하출혈의 위험 요인
 - 흡연
 - 고혈압
 - 과도한 음주
 - 동맥류의 크기, 위치
 - 환자의 연령과 건강 상태
 - 위험 요인 및 가족력이 있는 환자에게 선별 검사가 권고된다.

파열된 뇌동맥류 (동맥류성 뇌지주막하출혈)의 치료 지침

- 진단에 대한 권고 사항
 - 내원 시 Modified-WFNS scale, GCS : 예후 판단에 유 용하다. (근거수준Ⅲ, 권고수준B)
 - 신경학적 결손이 있거나, 없다 하더라도 40세 이상의 경부통, 경부강직, 의식 소실, 활동중의 갑작스런 두통 증상을 보이는 환자에게 brain CT가 권고된다. (근거 수준Ⅲ, 권고수준B)
 - Non-contrast CT에서 SAH가 확인되지 않았을 때 동 맥류의 확인을 위해 CT angiography가 권고된다. (근 거수준III, 권고수준B)

파열된 뇌동맥류 (동맥류성 뇌지주막하출혈)의 치료 지침

- 진단에 대한 권고 사항
 - SAH가 진단되었을 때 정확한 치료 방침 결정을 위해 DSA가 권고된다. DSA가 불가능한 환자에서 대안적으로 multidetector CT angiography가 실 행될 수 있다. (근거수준Ⅲ, 권고수준B)
 - 내원 시 CT angiograpy와 DSA에서 동맥류가 발견되지 않은 경우 시간 경과 후 반복적인 DSA가 권고된다. (근거수준Ⅲ, 권고수준B)

파열된 뇌동맥류 (동맥류성 뇌지주막하출혈)의 치료 지침

- 재출혈 방지를 위한 권고사항
 - 약물 치료
 - 결찰 수술 혹은 혈관내 수술이 이루어질때까지 철저한 혈압 조절 (수축기혈압 160이하)이 권고된다. (근거수준 III, 권고수준B)
 - 치료 시점
 - 치료에 특별한 방해 요인이 없다면 재출혈 방지를 위해 뇌출혈 발생 72시간 이내에 파열된 동맥류가 피료되는 것이 합리적이다. (근거수준IIa, 권고수준B)

파열된 뇌동맥류 (동맥류성 뇌지주막하출혈)의 치료 지침

- 결찰 수술과 코일 색전술에 대한 권고
 - 결찰 수술과 코일 색전술이 모두 가능할 경우 코일 색전술이 먼저 권고된다. (근거수준lb, 권 고수준A)
 - 스텐트 (stent)의 사용은 제한된 cases에서 다른 치료적 대안이 없을 경우 주의깊게 사용되어애 한다. (근거수준III, 권고수준B)

파열된 뇌동맥류 (동맥류성 뇌지주막하출혈)의 치료 지침

- 결찰 수술과 코일 색전술에 대한 권고
 - 결찰 수술을 먼저 고려해야 하는 경우
 - 40세 이하 (근거수준IIa, 권고수준B)
 - 감압 혹은 제거를 고려할 정도의 용적을 차지하는 혈종 이 있는 경우 (근거수준III, 권고수준B)
 - 중대뇌동맥의 뇌동맥류 (근거수준IIa, 권고수준B)
 - 넓은 경부(wide-necked)의 뇌동맥류 (근거수준III, 권고 수준B)
 - 동맥류에서 혈관이 분지 (근거수준III, 권고수준B)

파열된 뇌동맥류 (동맥류성 뇌지주막하출혈)의 치료 지침

- 코일 색전술을 먼저 고려해야 하는 경우
 - 70세 이상 (근거수준IIa, 권고수준B)
 - 신경학적 상태가 불량한 경우 (WFNS grade Ⅳ, Ⅴ) (근거수준Ⅲ, 권고수준B)
 - 후방순환계 동맥류 (근거수준IIa, 권고수준B)
 - 경부가 좁은(narrow-necked) 동맥류 (근거수준Ⅲ, 권고수준B)
- 코일 색전술의 경우 재발이 가능성이 있어 장기간의 추적 관찰이 권고된다. (근거수준IIb, 권고수준B)

Endovascular treatment of cerebral aneurysm

김 대 원

원광대학교병원 신경외과

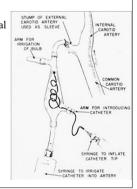
제 15차 ASCENT 2021

Endovascular treatment of cerebral aneurysm

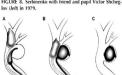
Contents

- History
- Principles of endovascular treatment
- Evolution of treatment methods (e.g. instruments...)

History

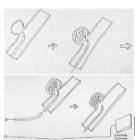

- 1937년 Dandy 교수가 처음 brain aneurysm clipping을 마친 다음 한 말 : "An aneurysm at the circle of Willis is not entirely hopeless"
- 그 이후 surgical clipping이 brain aneurysm을 치료하는데 가장 합리적인 치료 과정으로 되어 갔음.
- 1980년대 중반 Yasargil 교수가 aneurysm clipping 에 관한 책을 발간한 이후 수술에 대한 지견이 혁신적으로 발전하였음.
- 반면 수술의 invasiveness (craniotomy, brain retraction, arachnoid dissection, aneurysm manipulation) 때문에 덜 침습적인 방법을 생각함.

History

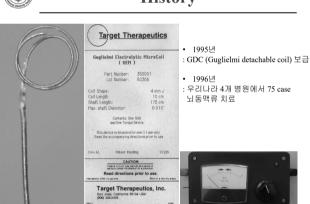

• 1964년 Georgetown University Hospital in Washington의 **Lussenhop** and Velasquez : 처음으로 brain vessel에 catheterization & AVM 치료 시도.

History

- Early 1960,
- Fedor Serbinenko (Burdenko Neurosurgical Institute in Moscow
- 300명 이상의 환자를 Non-detachable & detachable balloon을 이용하여 치료.
- 냉전시대로 인해 1974년 서방에 소개됨.



History


• 1989년 University of California (U.C.L.A)의 Guglielmi라는 endovascular neurosurgeon에 의해 획기적인 방법이 고안됨

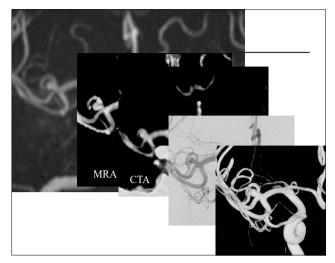
History

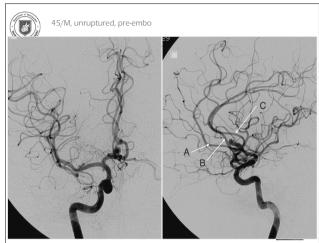
Principles of endovascular aneurysm treatment

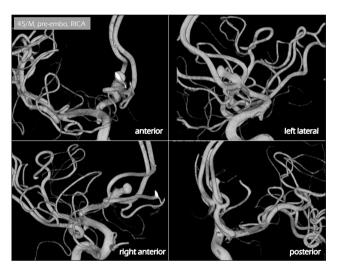
- Adequate embolization of aneurysm
- Determine a working projection
- Determine a coiling technique
- Choose a GC system
- Choose a MC w or w/o shaping
- Aneurysm selection (Navigate MCs)
- Deploy coils
- Prevent complications
 - ; parent artery, branch occlusion
 - ; premature rupture
 - ; thrombosis

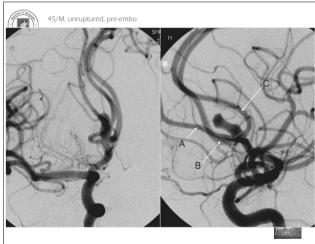
General preparation

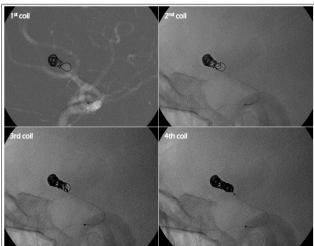
- · When?
 - ASAP in ruptured cases
- · Pre-embo. Medication in unruptured cases
 - ; ASP + clopidogrel
- · General anesthesia or Deep sedation
- A-line monitoring (Sheath)
- Systemic heparinization during the procedure
 - ; heparin bolus: 3000 IU + 1000 IU/hr
- Post-embo. heparinization or antiPLT in selected cases






1. Determine a working projection


- Aneurysm shape & relation to parent artery
- By using
 - 1. DSA with 3D reconstruction
 - 2. CTA 3D reconstruction
 - 3. MRA 3D reconstruction
- Orientation of Important branch
 - ant. Choroidal artery
 - ophthalmic artery......



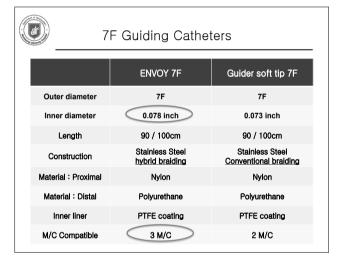
Prerequisites for success

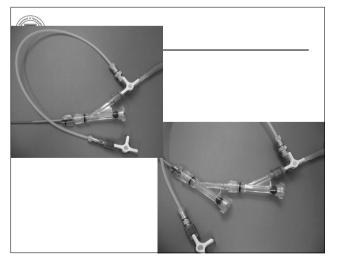
- Adequate support of GC system
- Adequate support of MC
- Adequate choice of coils
- How to overcome the tortuousity
- How to make a supportable shape

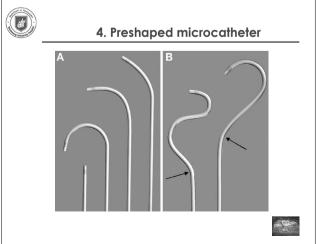
Satellite symposium for nurses and technicians

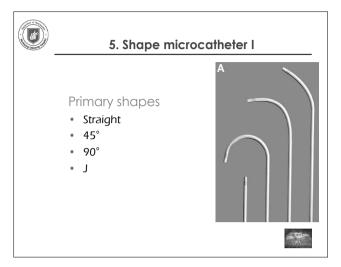
2. Determine a coiling technique

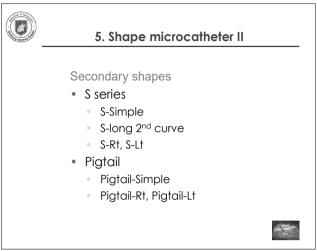
- Single MC
- Double MC
- Balloon-assisted
- Stent-assisted
- Catheter-assisted

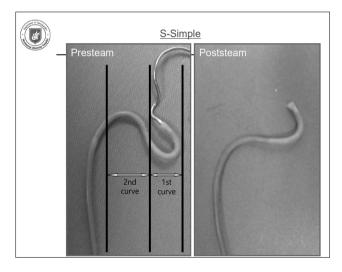


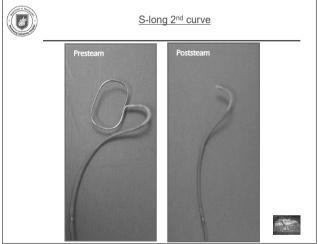

3. Choose a GC System

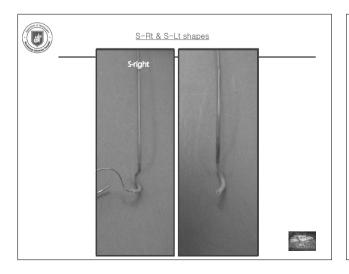

- 5F: single MC (10") compatible with GDC 10
- 6F: single or double MC (14"+14")
- 7F: double MC or balloon cath.+single MC
- 8F (Envoy 7F): double MC + balloon or stent
- Coaxial system: GS (Shuttle Flexor)+GC
- Should check the flow after placement
- Frequently check heparinized saline dripping

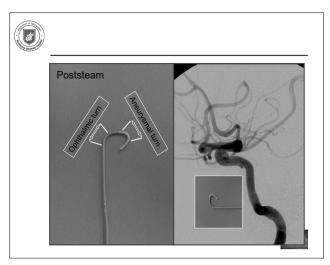


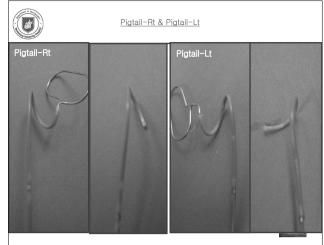








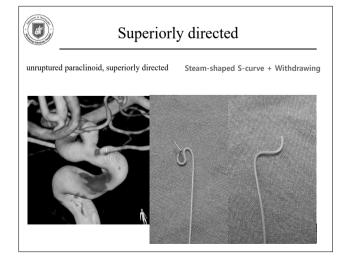




Satellite symposium for nurses and technicians

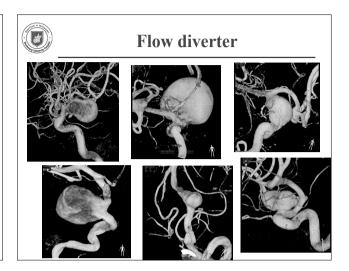
6. Aneurysm selection (Navigate MCs)

- 1. Antegrade (routine)
- 2. Retrograde
- 3. Wire-rotating
- 4. Looping & withdrawing
- 5. Coil-guided
- 6. Wire-guided
- All efforts to avoid rupture



7. Deploy coils: considerations

- Frame vs. fill vs. finishing
- Coil Shapes: 3D or complex/helical
- Coil Softness: Standard/soft/US
- Pusher stiffness
- Bare/Coated coil

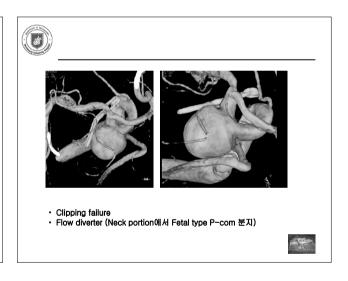


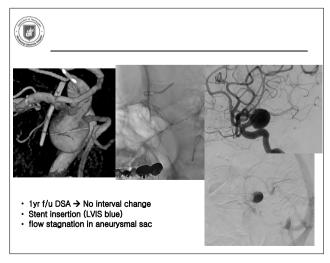
Evolution of treatment methods

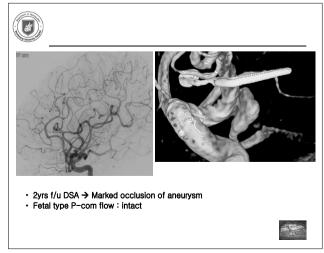
- Evolution of balloon
- : Hyperform, Hyperglide, Scepter.....
- Evolution of stent
- : Major role in the development of endovascular aneurysm treatment
- : Neuroform
- : Enterprise, Solitare, Lvis blue or Jr,
- : Flow diverter
 - PED, Surpass, FRED.....
- Flow disrupter
- WEB.....

Flow diverter

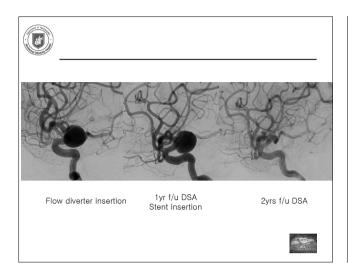
• A/S: 61/F


• C/C: Dizziness c headache


• P/Hx: Non specific

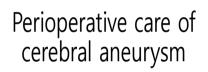

• N/EX

Mental : alertMotor : intact



Satellite symposium for nurses and technicians

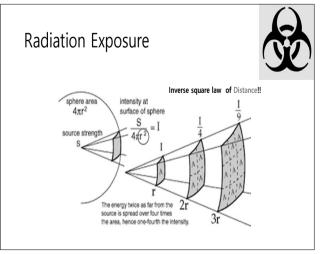
Summary

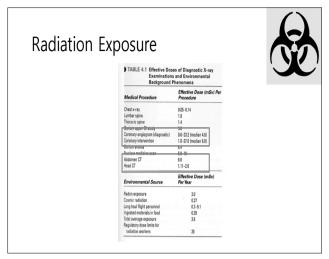

- support?
- heavy duty buddy wire
- How to shape a MC tip? Thorough comparative evaluation of a parent artery & aneurysm in the relative directions
- How to navigate a MC? Choose the most safe & practical way

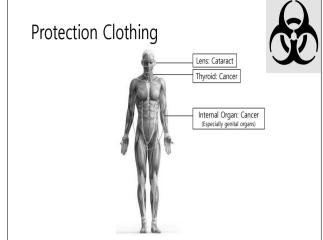
Perioperative care of cerebral aneurysm

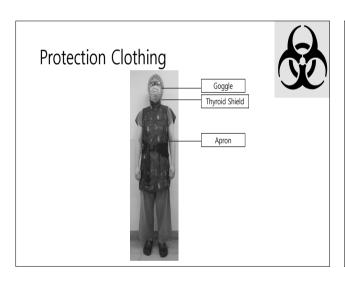
고 정 호

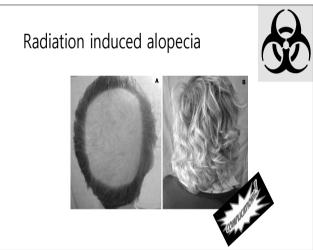
단국대학교병원 신경외과

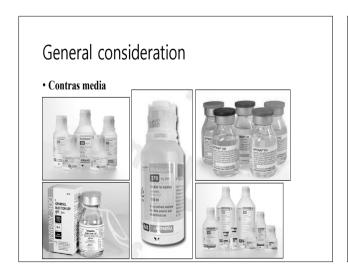


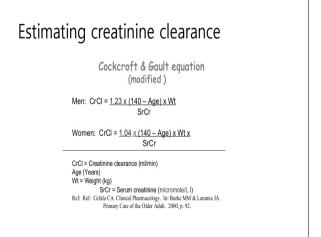

단국대학교 신경외과학교실 고정호









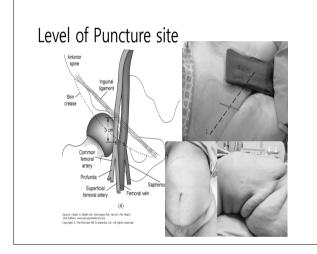


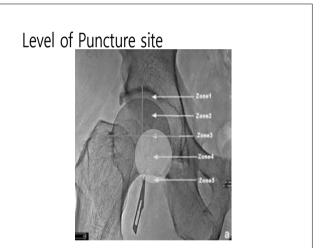
General consideration

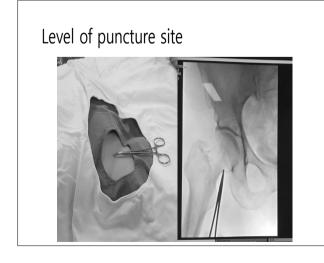
• Contrast media

For Prevention of contrast media induced nephropathy

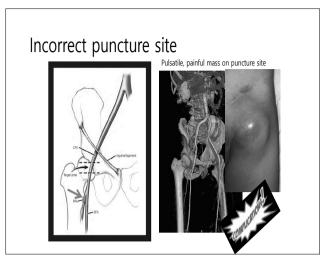
: IV sodium bicarbonate N-acetylcysteine 600mg 2 times/d P.O.

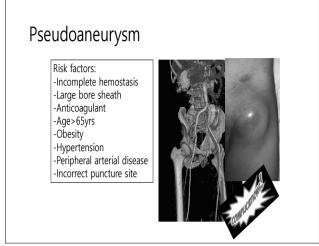

For prevention of anaphylaxis at 4 hours before treatment

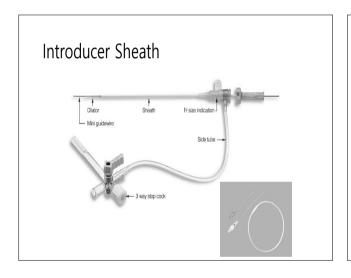

: prednisone 50 mg P.O hydrocortisone 200 mg IV phenylamine etc.

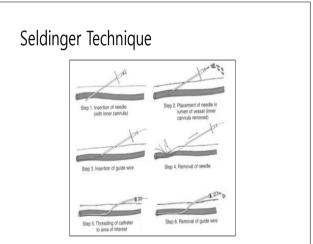

Location of Puncture site

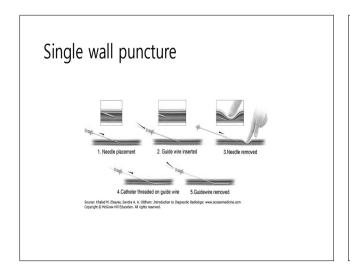
- Femoral Artery
- Radial Artery
- Brachial Artery
- Direct Carotid Artery

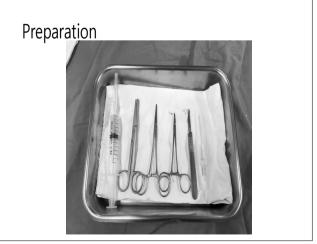









Satellite symposium for nurses and technicians



Femoral puncture

Guide wire and catheter

A catheter has to follow a road the guide wire has passed .

Guide wire and catheter

A catheter has to follow a road the guide wire has passed .

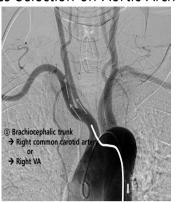
Aortography

Catheter movement

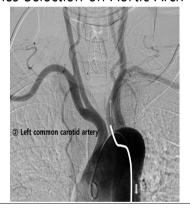
• Co-axial rotation

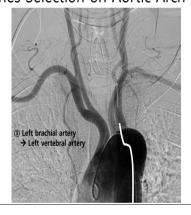
• Push and Pull

Branches Selection on Aortic Arch



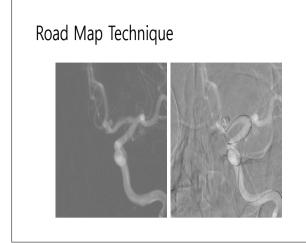
Satellite symposium for nurses and technicians

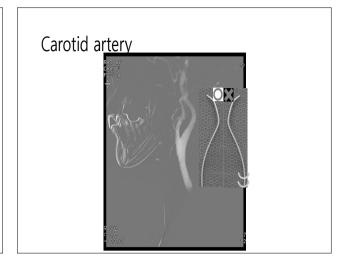

Branches Selection on Aortic Arch

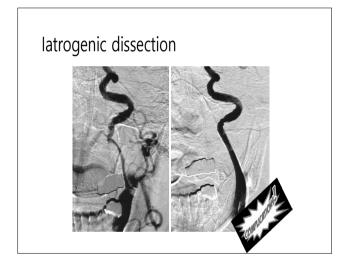

Branches Selection on Aortic Arch

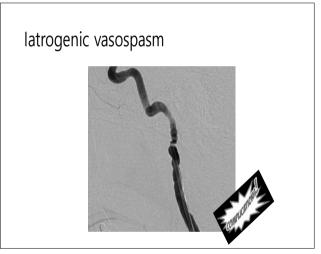
Branches Selection on Aortic Arch

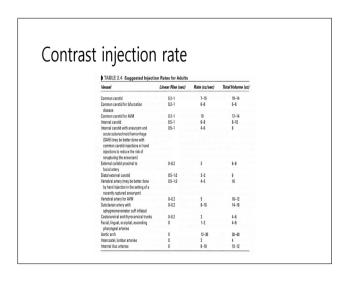
Branches Selection on Aortic Arch

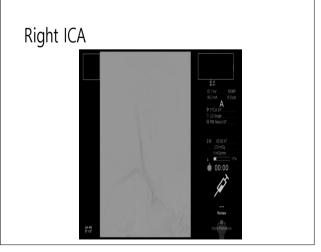

Branches Selection on Aortic Arch

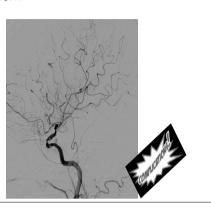


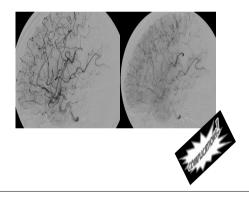

Road Map Technique




Most essential technique for intervention






Left ICA

Air embolism

Thromboembolism

Prevention of thromboembolism

• Heparinization

시술 시작Heparin 3000~5000 unit or 50~70 units/kg 투여 5분 후 ACT 250~300 sec

• Antidote: Heprin 100 units 당 Protamin sulfate 1 mg을 투여하고 반감기를 고려하여 투여량을 결정한다

헤파린 부하 후 시간*	3,000 U 후 부하 시 프로타민 용량	5,000 U 후 부하 시 프로타민 용량	
0~30분	3 CC	5 α	
30~60분	1.5 cc (1/2 용량)	2.5 cc (1/2 용량)	
1~2시간	1 cc (1/3 용량)	1.7 cc (1/3 용량)	
> 2시간	0.75 cc (1/4 용량)	1.3 cc (1/4 용량)	

Prevention of thromboembolism

• Antiplatelet premedication

Unruptured aneurysm

Aspirin 100mg + clopidogrel 75mg for 3 to 5 days before treatment

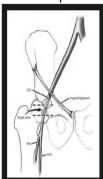
Ruptured aneurysm

Loading dose 후 시술 Aspirin 300mg + Clopidogrel 300~600mg

Or Abciximab 0.25 mg/kg IV ightarrow 102 μg/kg(최대 10 mg/min) for 12hrs Eptifibtide 180 μg/kg IV ightarrow 10분 후 다 시 180 μg/kg/V ightarrow 2 μg/ kg IV for 12hrs Tirofiban 0.4 μg/kg/min for 30 mins ightarrow 0.1 μg/kg/min

Hemostasis of Puncture site

- Manual compression
- Instrumental compression
- Closing device


Hemostasis of Puncture site

• Manual compression

Safe Economic Available for re-puncture
But need compression and bed rest a longer time

- Instrumental compression
- Closing device

Manual compression

- Proximal compression using 2 finger Compression of minimal pressure without leakage of blood Check pulsation of dorsalis pedis
- For 20 minutes Sandbag compression up to 6-8 hours

Hemostasis of Puncture site

- Manual compression
- Instrumental compression
- Closing device

Hemostasis of Puncture site

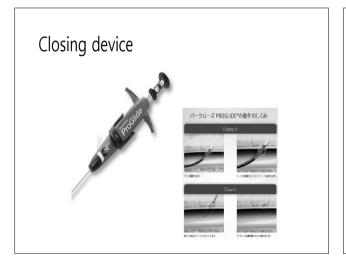
- Manual compression
- Instrumental compression

Can keep constant pressure of compression

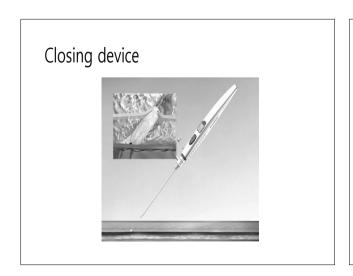
• Closing device

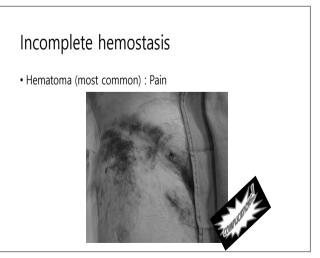
Instrumental compression

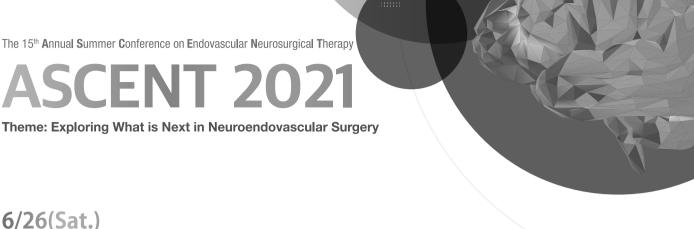
Instrumental compression


Hemostasis of Puncture site

- Manual compression
- Instrumental compression
- Closing device


Hemostasis of Puncture site


- Manual compression
- Instrumental compression
- Closing device


Shorter closing time
Early ambulation (after 2hours)
But no available for repuncture within 3 mos
Risk of occlusion
If fail, massive bleeding will be occured

6/26(Sat.)

Basic endovascular training course

좌장: 유승훈(울산대) / 장인복(한림대)

1. Imaging of carotid stenosis 이아름(순천향대 영상의학과)

2. Review of devices 윤원기(고려대)

3. Patent selection, technical tips and basic tactics 신병국(동의의료원)

4. Escape from complicated situation 김영우(가톨릭대)

Imaging of carotid stenosis

이아름

순천향대학교 부천병원 영상의학과

Carotid Stenosis Imaging: Imaging beyond the lumen

Aleum Lee

Department of Radiology
Soonchunhyang University Bucheon Hospital
2021.06.26

ASA/ACCF/AHA/AANN/
AANS/ACR/ASNR/CNS/SAIP/SCAI/
SIR/SNIS/SVM/SVS Guideline on the
Management of Patients With Extracranial
Carotid and Vertebral Artery Disease

Developed in Collaboration with the American Academy of Neurology and Society of Cardiovascular Computed Tomography

Guideline for Patients With Extracranial Carotid and Vertebral Artery Disease

 Evaluation of Asymptomatic Patients at Risk of Extracranial Carotid Artery Disease

Recommendations for Duplex Ultrasonography to Evaluate Asymptomatic Patients With Known or Suspected Carotid Stenosis

In asymptomatic patients with known or suspected carotid stenosis, duplex US, performed by a qualified technologist in a certified laboratory, is recommended as the initial diagnostic test to detect hemodynamically significant carotid stenosis.

It is reasonable to perform duplex US to detect hemodynamically significant carotid stenosis in asymptomatic patients with carotid bruit.

Recommendations for Duplex Ultrasonography to Evaluate Asymptomatic Patients With Known or Suspected Carotid Stenosis (continued)

It is reasonable to repeat duplex US annually by a qualified technologist in a certified laboratory to assess the progression or regression of disease and response to therapeutic interventions in patients with atherosclerosis who have had stenosis greater than 50% detected previously. Once stability has been established over an extended period or the patient's candidacy for further intervention has changed, longer intervals or termination of surveillance may be appropriate.

Recommendations for Duplex Ultrasonography to Evaluate Asymptomatic Patients With Known or Suspected Carotid Stenosis (continued)

Routine serial imaging of the extracranial carotid arteries is not recommended for patients who have no risk factors for development of atherosclerotic carotid disease and no disease evident on initial vascular testing.

Guideline for Patients With Extracranial Carotid and Vertebral Artery Disease

 Recommendations for Diagnostic Testing in Patients With Symptoms or Signs of Extracranial Carotid Artery Disease

Recommendations for Diagnostic Testing in Patients With Symptoms or Signs of ECVD

The initial evaluation of patients with transient retinal or hemispheric neurological symptoms of possible ischemic origin should include noninvasive imaging for the detection of ECVD.

Duplex US is recommended to detect carotid stenosis in patients who develop focal neurological symptoms corresponding to the territory supplied by the left or right internal carotid artery.

Recommendations for Diagnostic Testing in Patients With Symptoms or Signs of ECVD (continued)

When an extracranial source of ischemia is not identified in patients with transient retinal or hemispheric neurological symptoms of suspected ischemic origin, CTA, MRA, or selective cerebral angiography can be useful to search for intracranial vascular disease.

When the results of initial noninvasive imaging are inconclusive, additional examination by use of another imaging method is reasonable. In candidates for revascularization, MRA or CTA can be useful when results of carotid duplex US are equivocal or indeterminate.

Recommendations for Diagnostic Testing in Patients With Symptoms or Signs of ECVD

Routine, long-term follow-up imaging of the extracranial carotid circulation with carotid duplex US is not recommended (Class III; Level of Evidence B). (New recommendation)

CAS vs. CEA

It is reasonable to consider patient age in choosing between CAS and CEA. For older patients (ie, older than ≈70 years), CEA may be associated with improved outcome compared with CAS, particularly when arterial anatomy is unfavorable for endovascular intervention. For younger patients, CAS is equivalent to CEA in terms of risk for periprocedural complications (ie, stroke, MI, or death) and long-term risk for ipsilateral stroke (Class IIa; Level of Evidence B).

Relative Indications for CEA vs. CAS

- · Carotid Endarterectomy
 - · Calcified carotid plaque
 - · Antiplatelet agent intolerance
 - · Calcified or tortuous aortic arch
- · Carotid Artery Stent
 - · High carotid bifurcation
 - · Prior neck radiation
 - · Recurrent stenosis following prior CEA
 - · High cardiac risk of general anesthesia
 - Younger patients
 - · Contralat. occlusion with symptomatic perfusion deficits

Role of Imaging study for Carotid stenosis

- Risk Assessment
 - · Carotid plaque morphology
 - Carotid stenosis
- Peri-/post-procedural Complication
- Clinical outcome
 - · Ischemic infarction
 - · Re-stenosis
 - Improvement of cerebral perfusion state (CBF) after CEA or CAS
 - Evaluation of progression of high-risk plaque

Risk Assessment - USG/ MRI

· Carotid plaque morphology

Ulcerated carotid plaque increasing degree of carotid stenosis, and longer carotid lesions are aspects of carotid disease associated with increased risk for stroke

· Degree of carotid artery stenosis

Carotid USG

research

- Carotid plaque area & IMT in prediction of first-ever ischemic stroke: a 10-yr FU of 6584 men & women: the Tromsø Study.
 Stroke 2011; 42: 972-978
 - CCA IMT progression as a predictor of stroke in multi-ethnic study of atherosclerosis.

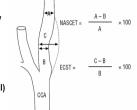
Stroke 2011; 42: 3017-3021

 Value of carotid IMT and significant carotid stenosis as markers of stroke recurrence.

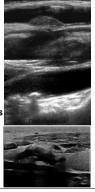
Stroke 2011; 42: 3099-3104

Intima-media thickness (IMT)

- Distance between blood-intima interface and media-adventitia interface
- Imaging surrogate marker of systemic atherosclerosis
- Imaging approaches:
 - Distal CCA (1cm), far wall, end-diastolic image
 - IMT hyperplasia (> 1mm, loss of hypoechoic component of the IMT with thickening)

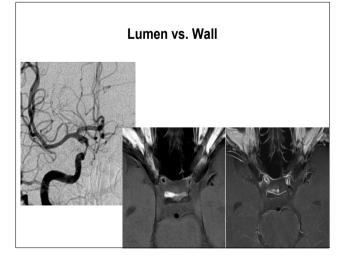

in trickering)

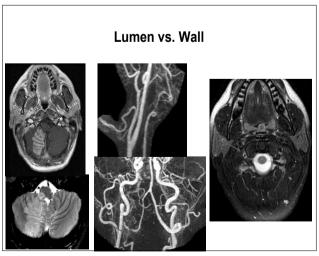
Stenosis evaluation


NASCET (North American
 Symptomatic Carotid Endarterectomy
 Trial) method (*)

ECST (European Carotid Surgery Trial)
 method

Plaque Characterization


- Homogeneous
- Uniform echo pattern and smooth surface
- Fibrous (soft) / Calcified (hard)
- Heterogeneous
- Complex echo pattern (>50% sonolucency)
- Intra-plaque hemorrhage or ulceration
- Unstable, potential for embolic ischemic attacks



Lumen vs. Wall

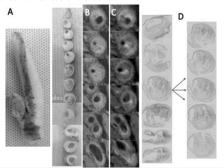
Indicator of stenosis

- Stenosis degree
- Plaque composition
- Remodelling
- Inflammation
- Limitation
 - Uncovering plaque size & volume (underestimation due to remodeling)
 - Not characterize plaque component

Modified American Heart Association (AHA) criteria Type I/II near normal wall thickness, no calcification Type III diffuse intimal thickening or small eccentric plaque with no calcification Type IV/V plaque with a lipid or necrotic core at risk lesion surrounded by fibrous tissue with possible with LRNC calcification Type VI complex plaque with possible surface defect, hemorrhage or thrombus most J Neurol Neurosurg important Psychiatry Type VII calcified plaque 2008:79:905-912 Type VIII fibrotic plaque without lipid core and possible small calcifications

High risk plaque

- · Lipid rich necrotic core
- IPH


In Vivo Accuracy of Multispectral Magnetic Resonance Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques

Circulation. 2001;104:2051-2056

- 18 patients scheduled for carotid endarterectomy
- Preop MRI at 1.5T (within 1 week), TOF, T1WI, PD, and T2WI.
- Matched histological sections of the excised specimen
- Overall accuracy of multispectral MRI was 87% (80% to 94%), sensitivity was 85% (78% to 92%), and specificity was 92% (86% to 98%).
- Good agreement between MRI and histological findings, with a value of k 50.69 (0.53 to 0.85).

Methods used for spatial correlation between MR images and histological slices

- Patients scheduled for carotid endarterectomy
- Preoperative carotid MRI
- Distance from carotid bifurcation

TABLE 1 Contrast at MR Imaging of Main Components of Atherosclerotic Plaque Intermediate Weighted Plaque Component T1 Weighted T2 Weighted Recent hemorrhage High to moderate Variable Variable Lipid-rich necrotic core Intimal calcification Moderate High Variable Low Variable Moderate to low Fibrous tissue Moderate High Note.—Tissue contrast is relative to signal intensity of sternocleidomastoid muscle.

Yuan, C, et al. Radiology 2001;221:285-299

Concept of CE-VWI

- Gd-clearance is delayed in carotid AS- plaques with thin fibrous caps (< 60 um): inflammation and endothelial dysfunction Wasserman 2002
- Delayed enhancement of coronary vessel wall in patients with CAD Maintz 2006; Yeon 2007
- Enhanced contrast uptake in the coronary vessel wall of patients 6 days after AMI and decreased 3 months later parallel to the declines in CRP

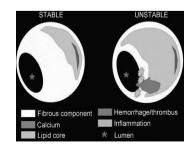
Ibrahim 2009

Carotid Artery Atherosclerosis: In Vivo Morphologic Characterization with Gadolinium-enhanced Double-oblique MR Imaging— Initial Results1

Radiology 2002; 223:566-573

In our cases, the enhancing tissue clearly corresponded to areas of fibrosis.
 Enhancement of fibrous tissue has long been observed with MR imaging.

Inflammation in Carotid Atherosclerotic Plaque: A Dynamic Contrast-enhanced MR Imaging Study Radiology 2016; 241:459-468


- To prospectively evaluate if there is an association between plaque enhancement at MR imaging and proinflammatory cardiovascular risk factors and plaque content.
- Strong CE suggests the presence of a vascular supply to the plaque and
 increased endothelial permeability that facilitates the entry of the contrast
 agent from the blood plasma. Because neovasculature growth into the
 plaque and increased endothelial permeability are associated with
 plaque inflammation, plaque enhancement has been argued to be a sign
 of plaque inflammation.

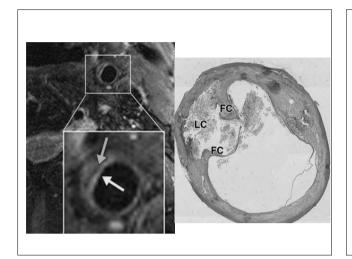
Inflammation in Carotid Atherosclerotic Plaque : A Dynamic Contrast-enhanced MR Imaging Study Radiology 2016; 241:459-468

Such a link has considerable clinical potential because inflammation has been linked to an increased risk of clinical vascular events. Plaque inflammation may have multiple effects that weaken plaque structural integrity, including inhibition of collagen production and dissolution of the fibrous matrix by means of matrix metalloproteinases. If plaque enhancement is a sign of inflammation, then CE MRI may be a tool for detecting plaque inflammation prior to fibrous cap disruption (not proved histopathologically). Wasserman et al and Yuan et al both proposed that patchy CE in advanced plaques might be indicative of increased inflammatory activity.

Clinical and histological significance of gadolinium enhancement in carotid atherosclerotic plaque Stroke 2012 43(11): 3023-3028

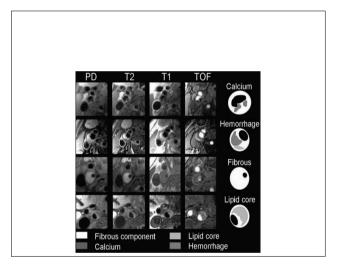
 This is one of the first studies to confirm that gadolinium enhancement is more frequent in symptomatic plaque and associated with vulnerable plaques according to standard histological classifications (ATA)- spatial association of CE with inflammation and neovascularization

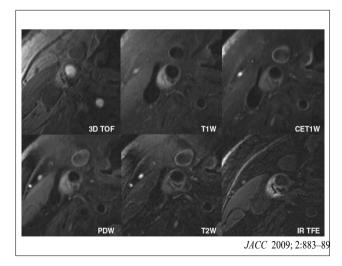
Lipid Rich Necrotic Core

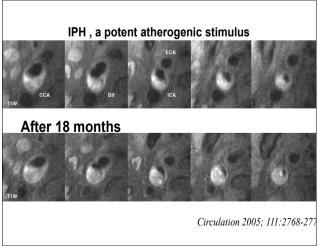

- T2: low signal + T1 and PD: Iso
- Contrast-enhanced MR: No enhanced area

LRNC: with or without IPH

LRNC with IPH: Progression LRNC without IPH: Regression


MRI techniques


- Specialized sequences targeting specific components
- 1. IPH
- Methemoglobin, shortened longitudinal relxation constant T1 , hyperintensity property on T1WI, TOF
- MP-RAGE : sensitivity of 80% and specificity of 97% Radiology 2010; 254:551–563


IPH

Radiology, 2010 Feb;254(2):551-63.

FSE MPRAGE

Hemorrhage in the Atherosclerotic Carotid Plaque: A High-Resolution MRI Study

Stroke. 2004;35:1079-1084

- Purpose: to develop criteria for the identification of the stages of intraplaque hemorrhage using high-resolution MRI
- 27 patients, scheduled for CEA, 1.5T (TOF, T1W, PD, T2W)
- 13 patients: TIA or stroke 90 days before sugery
- 14 patients: asymptomatic with a carotid stenosis >70%
- : IPH: fresh, recent, and old categories
- Histologic identification and staging of hemorrhage :145/189 (77%)
- MRI detected intraplaque hemorrhage with high sensitivity (90%) but moderate specificity (74%).
- Moderate agreement in classifying stages occurred between MRI and histology (Cohen 0.7, 95% CI: 0.5 to 0.8 for reviewer 1 and 0.4, 95% CI: 0.2 to 0.6 for reviewer 2), with moderate agreement between the 2 MRI readers (0.4, 95% CI: 0.3 to 0.6).

Prevalence of High-Risk Plaque Features

- · High-risk plaque in minimal to moderate stenosis
- : Type VI lesions

in 1/3 with asymptomatic 50-79% stenosis and 1/10 with 16-49% stenosis

- Numerous studies compared the prevalence of high-risk features in symptomatic vs asymptomatic plaques
- thin fibrous caps, IPH, ulceration, Gd enhancement of adventitia, type VI lesion : significant

Plaque Characteristics and Clinical Outcome

- · Prospective observational studies
- 154 subjects with 50–79% carotid stenosis, asymptomatic, mean f/u period of 38.2 months
- 12 patients developed cerebrovascular events (4 strokes and 8 TIAs)
- · Associations between ischemic events and
 - thin or ruptured fibrous cap (17.0; P < 0.001)
 - IPH (hazard ratio, 5.2; *P* = 0.005)
 - larger mean necrotic core area (hazard ratio for 10mm² increase, 1.6; P = 0.01)
 - maximal wall thickness (hazard ratio for 10mm² increase, 1.6; P =0.01)

Stroke 2006; 37:818–82

Plaque Characteristics and Clinical Outcome

- · The importance of IPH in predicting cerebrovascular complications
- 1) 91 subjects with 50–70% carotid stenosis, asymptomatic, mean f/u period of 25 months
- 6 cerebrovascular events occurred
 - IPH at baseline (hazard ratio, 3.6; P P <0.001)
- 2) 64 subjects with 30-69% carotid stenosis, symptomatic, mean f/u period of 28 months
- At 39 IPH → 13 developed ipisilateral ischemic events (hazard ratio, 9.8; P P = 0.03)
- No baseline IPH → only one TIA

J Vasc Surg 2008; 47:337–342

Plaque Characteristics and Complication

- · The importance of IPH in choosing treatment options
- 1) The existence of hyperintense signal on T1 WI of carotid lesions
- 56 patients undergoing carotid artery stenting (CAS)
- 25 patients undergoing CEA
- → silent ischemic lesions, 61% in CAS, 13% in CEA, P=0.006
- 2) Among 112 patients undergoing CAS,
- Hyperintense signals consistent with IPH on TOF images, higher likely hood of periprocedural symptoms (embolism) 7/38, 18.4% vs 1/74, 1.4%, P=0.003

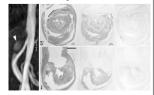
Atherosclerosis 2011; 215:399-404

Stroke 2011; 42:3132-3137

Complication

ligh-Intensity Signal on Time-of-Flight Magnetic Resonance Angiography Indicates Carotid Plaques at High Risk for Cerebral Embolism During Stenting

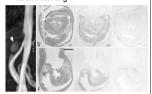
hinichi Yoshimura, MD, PhD*; Kiyofumi Yamada, MD*; Masanori Kawasaki, MD, Pt Takahiko Asano, MD; Musayuki Kanemutsu, MD; Manabu Takamutsu, MD;


Background on Progress. A verige desiration general entry entiting CASI companie is executed multicontensive. The increased set of secular endories. These scheduling is unique reached to declination frequire properties entate examination in important. The process may consider whether high-invaries speed (1955) in the project on time of-delight (1976) IRAS, performed in recoming, and desiration designs as layer in the configuration of the contraction of the contrac

pages and crowned consign Serie analysis, in the Lipschitch record only C. S. Springforms operand contents.

Some and efficience specific analysis and programs design specific analysis and programs. Specific players (1515-1506) have been specific programs of the program of the programs of the programs of the programs of the programs of the programs

Key Words: carotid ordanizactionsy ■ carotid stanosis ■ risk factors ■ stanting

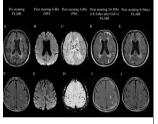

- High SI in the plaques on MRA
 - Associated with intraplaque hemorrhage and MQ infiltration on pathological analysis
 - Associated with ischemic lesions on DWI and ischemic symptom after carotid stenting

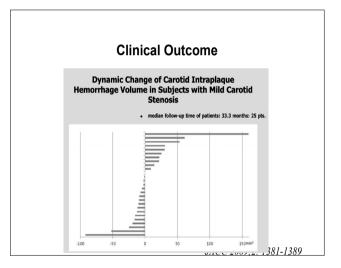
Complication

High-Intensity Signal on Time-of-Flight Magnetic Resonanc Angiography Indicates Carotid Plaques at High Risk for Cerebral Embolism During Stenting Smith Yoshum, MD. FDF. Kydnin Yanah, MD. Masure Karsali, MD. FBC. Takahila Asans MD. Masujat Karenne, MD. Mande Takansan, MD. Mali Iras, MD. Filos, Posters, MD. Filos.

- Reperfusion injury HARM sign
 - Associated with intraplaque hemorrhage and MQ infiltration on pathological analysis
 - · Associated with ischemic lesions on DWI and ischemic symptom after carotid stenting

Complication: reperfusion injury HARM sign

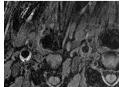

- . HARM (+) other than stroke
- Any situations which makes BBB disruption
 - with transient hemodynamic alterations, besides acute ischemia or reperfusion injury
 - 1) Cardiac surgery : 50% after cardiac surgery
 - 2) Carotid stenting: 60% after CAS
 - 3) Post-seizure
 - 4) Hemianopsia in nonketotic hyperglycemia


Stroke 2011; 42:3132-3137

Complication: reperfusion injury HARM sign

Simple consequence of Gd leakage through disrupted BBB in the normal perfusion state

- Mild form of reperfusion injury instead of hyperperfusion syndrome (HPS) in CAS or CEA
- · Imaging finding
- : not observed sulcal hyper-SI before stenting ·appeared after contrast injection during intervention (stent insertion)
- •rapidly disappeared within several hours to days
 - · Clinical course
 - Reversible neurological deterioration
 - Cause : transient reversible diffuse
 - hemispheric disruption of BBB Symptomatic HARM (+)



Clinical Outcome

A 75-year old man with IPH progression after 33 months. (Rt) Baseline. (Lt) MR imaging after 33 months.

A 75-year old man with IPH regression after 69 months. (Rt) Baseline. (Lt) MR imaging after 40 months.

JACC 2009;2: 1381-1389

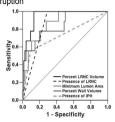
Plague Characteristics and **Clinical Outcome**

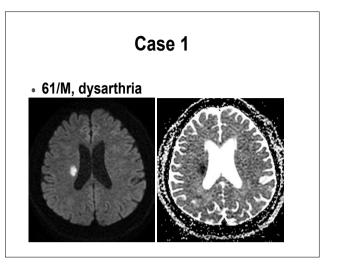
- · Hypothesis: IPH, a potent atherogenic stimulus
- 29 patients, at baseline and f/u MRI (18 months)
- : volume of wall, lumen, necrotic core, IPH

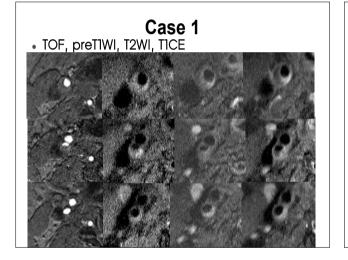
IPH at baseline, markedly accelerated progression in

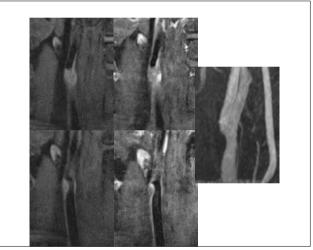
- wall volume (6.8% vs -0.15%, P =0.009)
- LR-NC (28.4% vs -0.15% P =0.001)
- new plaque hemorrhages (43% vs 0%, P=0.006)
- 67 asymptomatic patients with 16-49% stenosis,

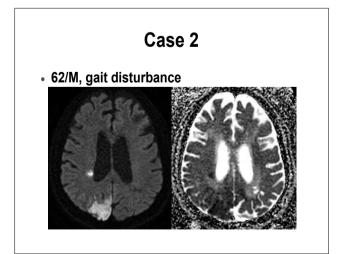
IPH, accelerated progression in carotid wall volume (44.1 \pm 36.1 vs 0.8 \pm 34.5 mm³ per year, P < 0.001).

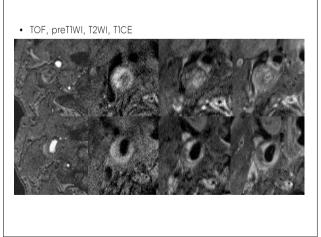

Circulation 2005; 111:2768-2775

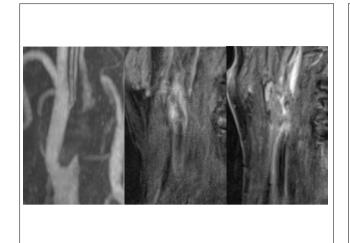

JACC 2009;2: 1381-1389

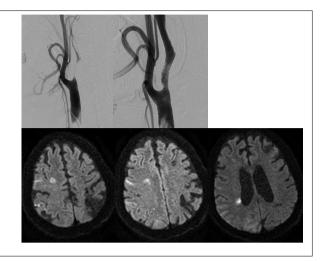

Plaque Characteristics and Clinical Outcome

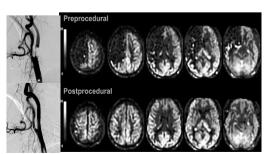

- Baseline plaque characteristics associated with important pathologic changes during 36 month f/u
- 108 asymptomatic Pt with 50-79% stenosis At baseline, 21.3% (23/108) with surface disruption After 3 years, 10.6% (9/85) with new surface disruption
- Size of the LR-NC at baseline, the strongest predictor (AUC: 0.95)
- IPH, weaker classifier (AUC=0.73)


AJNR 2010; 31:487-493

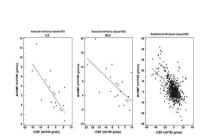




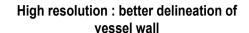


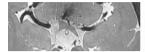


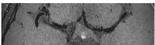
ASL perfusion MRI


- Identification of brain tissue at risk for ischemia has obvious benefits in operative planning and postoperative follow-up
- · ASL in carotid artery stenosis
 - Identification of CBF
 - · Identification of collaterals : intra-arterial signal
 - · Identification of postoperative change : repeatability

Courtesy of Prof. Yun, SNUH



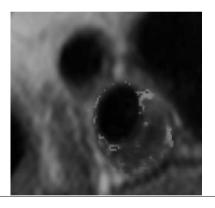

Courtesy of Prof. Yun, SNUH



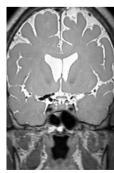
- Greater perfusion deficits prior to stenting have greater improvement in perfusion after stenting

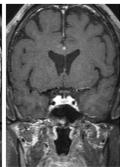
Challenges

High resolution : better delineation of vessel wall



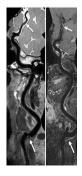
20~60% higher SNR



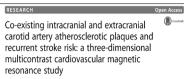


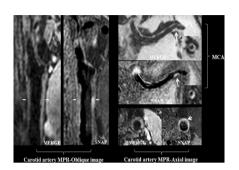
Neovascularization : perfusion MRI - inflammation

Coverage-whole brain


Low resolution: hard to delineation vessel wall

Simultaneous carotid-intracranial vessel wall imaging


- FOV: 19cm
- 5m 19s



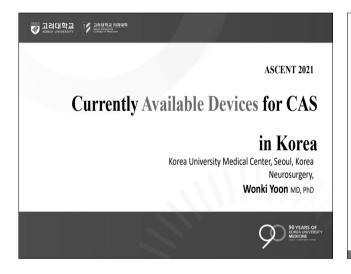
Simultaneous carotid-intracranial vessel wall imaging

Simultaneous carotid-intracranial vessel wall imaging

Take home message

- Carotid plaque features identifiable by Vessel Wall MRI are closely linked to the development of ischemic events and outcome in patient with carotid stenosis.
- Carotid MRA and brain MRI helps predict complication of CAS or CAE.

References


- AHA/ASA Guidelines 2014
- Carotid Artery Stenting: Review of Technique and Update of Recent Literature Semin Intervent Radiol. 2013 Sep; 30(3): 288–296.
- Carotid Artery Stenting versus Endarterectomy A Systematic
- Review Texas Heart Institute Journal
- Carotid Artery Stenting JOU RNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
- Gury-Paquet L, Millon A, Salami F, et al. Carotid plaque high-resolution MRI at 3 T: evaluation of a new imaging score for symptomatic plaque assessment. Magnetic Resonance Imaging. 2012.
- Millon A. Boussel L. Brevet M. et al. Clinical and histological significance of gadolinium enhancement in carotid atherosclerotic plaque. Stroke. 2012;43(11):3023-8.
- Bodle JD, Feldmann E, Swartz RH, Rumboldt Z, Brown T, Turan TN. High-Resolution Magnetic Resonance Imaging An Emerging Tool for Evaluating Intracranial Arterial Disease. Stroke. 2013;44(1):287-92.
- Kerwin WS, Hatsukami T, Yuan C, Zhao X-Q. MRI of Carotid Atherosclerosis. American Journal of Roentgenology. 2013;200(3):W304-W13.
- Kwak HS, Current Consensus of Vessel Wall Imaging: Intracranial and extracranial arteries, 2018

Thank you for your attention!

Review of devices

윤 원 기

고려대학교 구로병원 신경외과

Disclosure NONE

ASCENT 2021

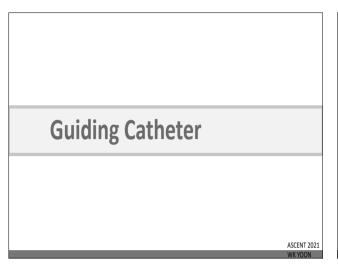
Consideration Points during CAS

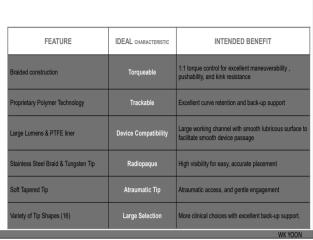
- Access
 - Tortuosity
 - Type of aortic arch
 - · Selection of guiding catheter
- Age over 70 CAS vs CEA
- Plaque
 - Soft vs Hard Calcified
 - · Vulnerable vs Stable
 - Embolic complication, passage, restoration of vessel diameter
- Predilation or Postdilation

- · Selection of Balloon
- · Selection of Stent
- Stent design
- Stent size
- Stent profile for passage
- Protection vs No-protection
- · Selection of protection device
 - Filter vs Membrane
 - Distal vs Proximal

ASCENT 2021 WK YOON

CREST (CAS performed with RX Acculink)

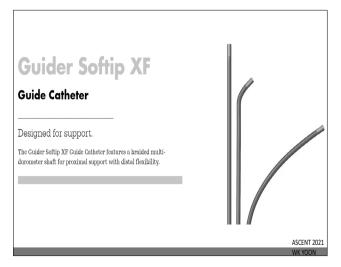

Table 2. Composite Primary End Point and Components of the Primary End Point

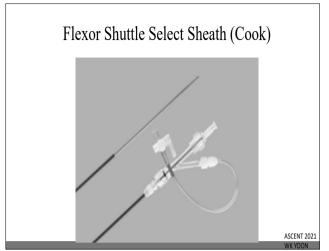

4-Year Study Period (Including Periprocedural Period*)				
	No. of Patients (%±SE)		Absolute Treatment Effect of CAS	
	CAS (N=1262)	CEA (N=1240)	Versus CEA (95% CI) Percentage Points	P†
Stroke				
Any stroke	105 (10.2±1.1)	75 (7.9±1.0)	2.3 (-0.6 to 5.2)	0.03
Major ipsilateral	16 (1.4±0.3)	6 (0.5±0.2)	0.8 (0.1 to 1.6)	0.05
Minor ipsilateral	52 (4.5±0.6)	36 (3.5±0.6)	1.0 (-0.7 to 2.7)	0.10
Primary end point (any periprocedural stroke, myocardial infarction, or death or post procedural ipsilateral stroke)	85 (7.2±0.8)	76 (6.8±0.8)	0.4 (-1.7 to 2.6)	0.51

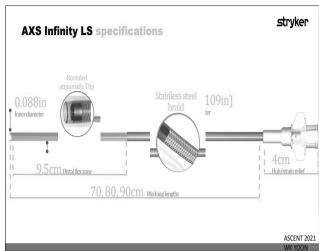
ASCENT 2021

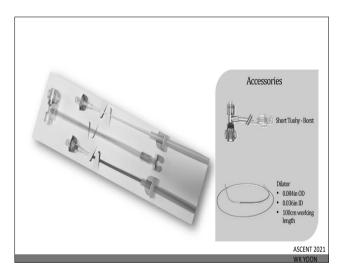
WK YOON

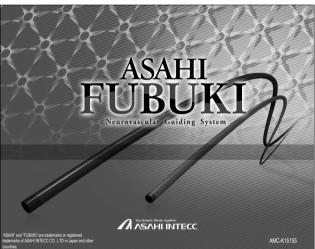
Basic endovascular training course

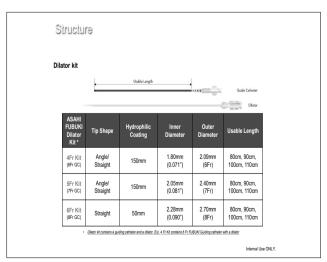


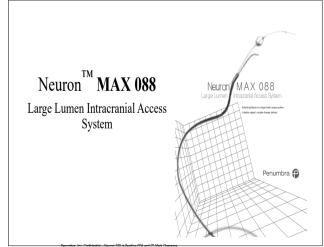


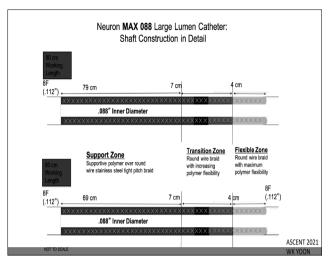

Standard Guide	Guide with Flow control	Standard Sheath	Premium Sheath
Guider Softip XF (Stryker)	FlowGate2 (Stryker)	Shuttle (Cook)	AXS Infinity LS Long Sheath (Stryker)
Benchmark (penumbra)	Merci (Stryker)	Raabe (Cook)	Neuron MAX 088 (Penumbra)
Chaperon (Microvention)	Cello (Medtronic)	Arrow (Teleflex)	
Envoy (Codman)	MoMA (Medtronic)	Pinancle Destination (Microvention)	
Vista Brite Tip (Cordis)			
Fubuki (Asahi Intecc)			
Mach 1 (Boston Scientific)			WK YUUN

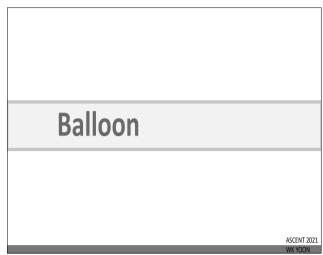

Standard Guide	Guide with Flow control	Standard Sheath	Premium Sheath
Guider Softip XF (Stryker)	FlowGate2 (Stryker)	Shuttle (Cook)	AXS Infinity LS Long Sheath (Stryker)
Benchmark (penumbra)			Neuron MAX 088 (Penumbra)
Chaperon (Microvention)	Cello (Medtronic)	Arrow (Teleflex)	
Envoy (Codman)	MoMA (Medtronic)		
Vista Brite Tip (Cordis)			
Fubuki (Asahi Intecc)			
Mach 1 (Boston Scientific)			
			WK YOON

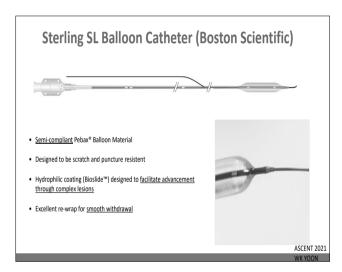

Standard Guide	Guide with Flow control	Standard Sheath	Premium Sheath
Guider Softip XF (Stryker)	FlowGate2 (Stryker)	Shuttle (Cook)	AXS Infinity LS Long Sheath (Stryker)
Benchmark (penumbra)			Neuron MAX 088 (Penumbra
Chaperon (Microvention)	Cello (Medtronic)	Arrow (Teleflex)	
Envoy (Codman)	MoMA (Medtronic)		
Vista Brite Tip (Cordis)			
Fubuki (Asahi Intecc)			
Mach 1 (Boston Scientific)			

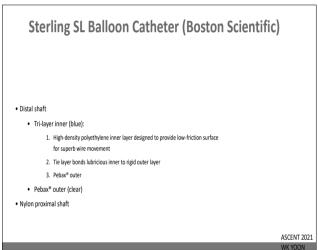


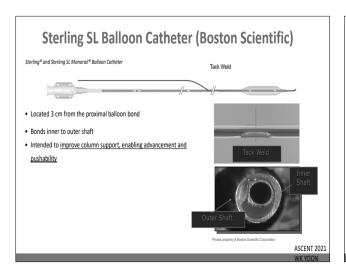


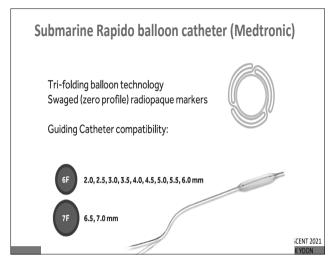


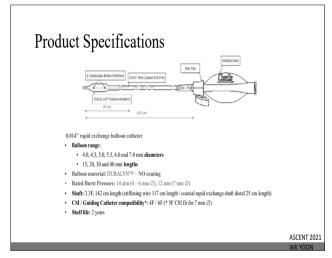


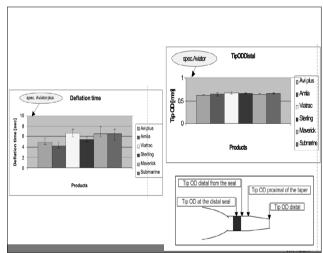


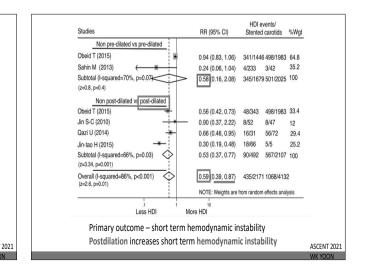


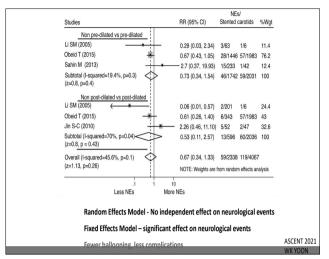


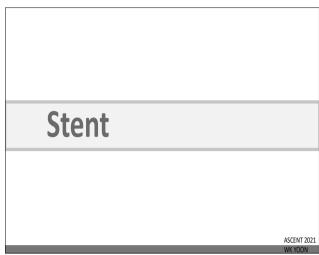


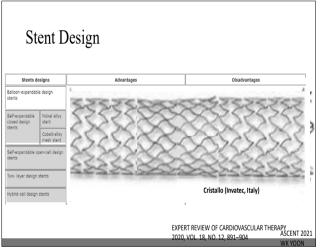


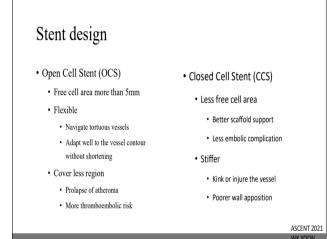


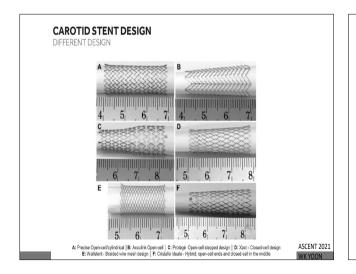

Catheter design	Rapid exchange
Range of diameter	Ø 2 – 7 mm
Range of lengths	20, 30, 40, 60, 80 mm
Usable Catheter length	135 cm
Guidewire compatibility	0.018"
Guide catheter compatibility	6F*
Balloon Material	FLEXITEC™ LP
Coating	Balloon and distal shaft LFC-hydrophilic coated, PTFE on Hypotube
Nominal/ Rated burst pressure	7/ 17 bar
Shaft diameter	Hypotube: 2.3F, RX-section: 3.5F

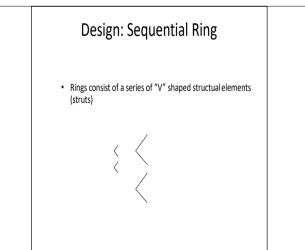


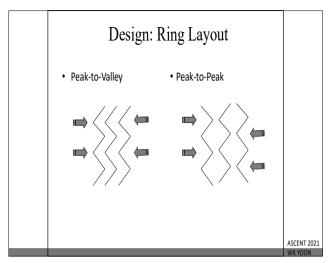


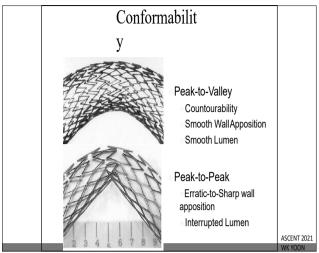


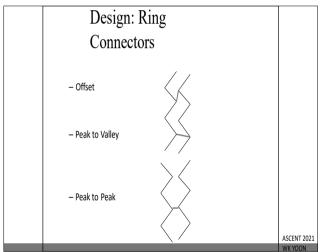


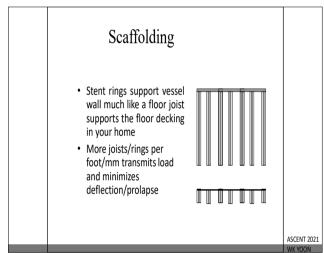


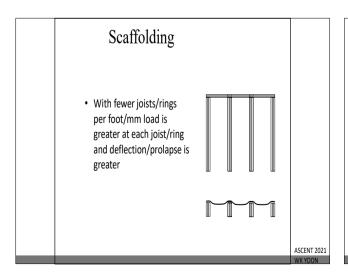


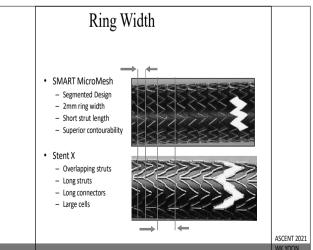


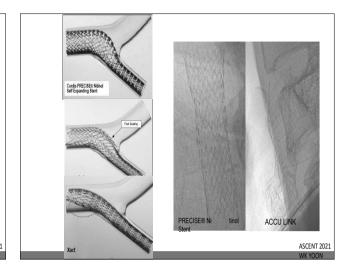


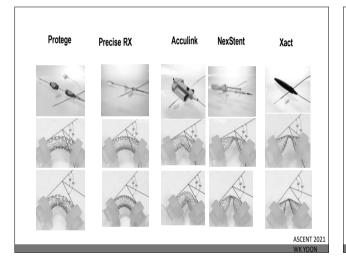












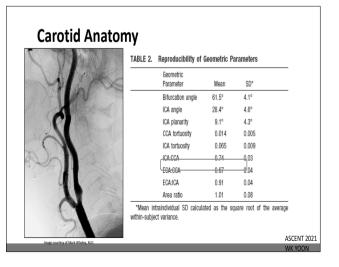
Conformability or Flexibility

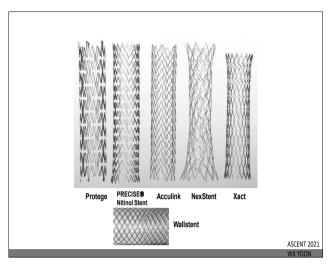
- Ability to conform to torturous anatomy during deployment
- Short struts and segmented design allows stent to conform to minute changes in vessel
- Ring connector position impacts stent conformability and ultimately wall apposition

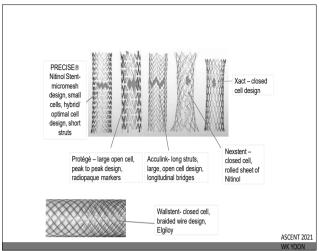
ASCENT 2021

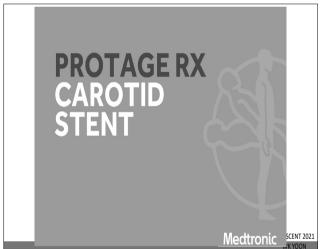
Open Area

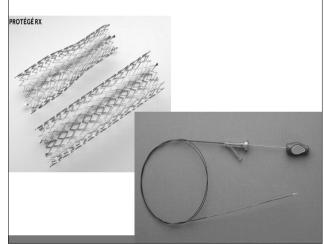
- Ratio of vessel material to stent material
- A lower ratio means more metal, increasing risk of intimal hyperplasia
- Micro-mesh verse large lattice

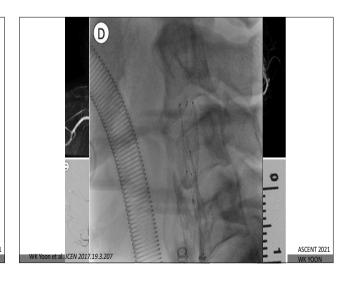

ASCENT 2021

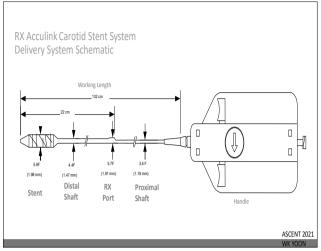

Consideration Points during CAS

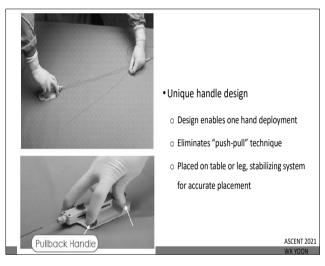

- Access
 - Tortuosity
 - Type of aortic arch
 - · Selection of guiding catheter
- Age over 70 CAS vs CEA
- Plaque
 - Soft vs Hard Calcified
 - Vulnerable vs Stable
 - Embolic complication, passage, restoration of vessel diameter
- Predilation or Postdilation

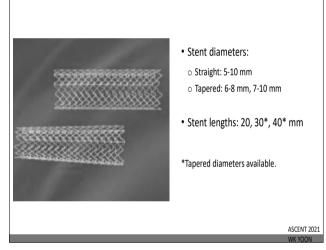

- · Selection of Balloon
- · Selection of Stent
- Stent design
- Stent size
- Stent profile for passage
- Protection vs No-protection
- Selection of protection device
 - Filter vs Membrane
 - Distal vs Proximal

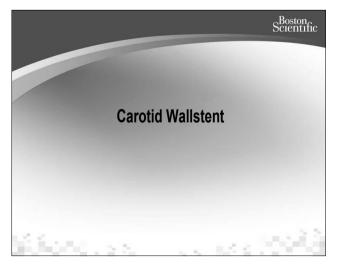

ASCENT 2021 WK YOON

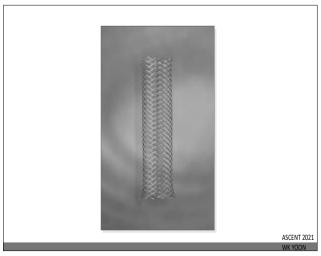


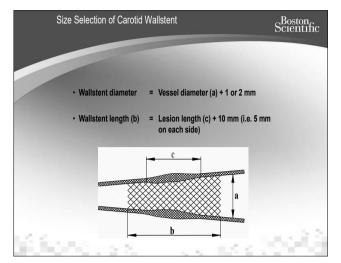


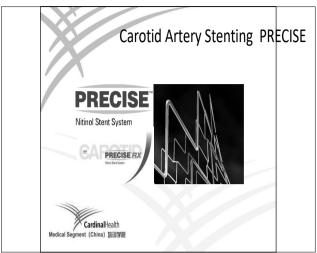

	Straight	Tapered		
Wire compatibility	0.01	0.014"		
Introducer sheath compatibility	61	=		
Stent diameter (mm)	6, 7, 8, 9, 10	8x6, 10x7		
Stent length (mm)	20, 30, 40, 60	30, 40		
Radiopaque markers	Ye	:S		
Catheter length (cm)	13	5		

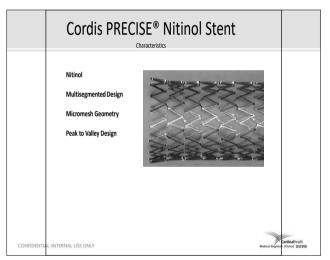


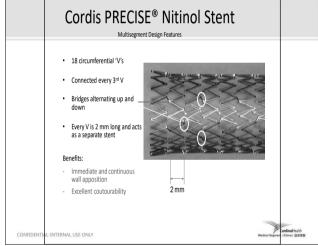

Basic endovascular training course

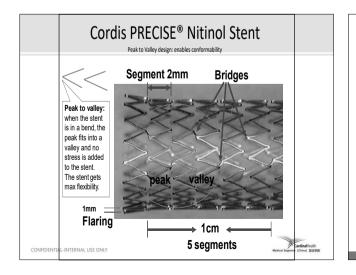


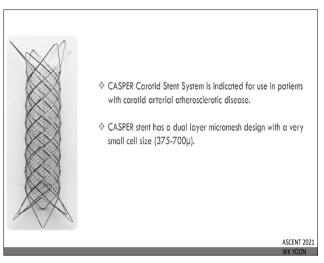


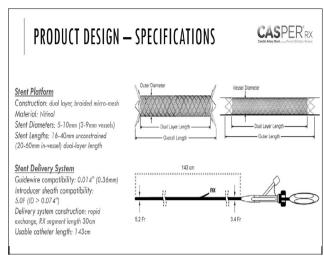


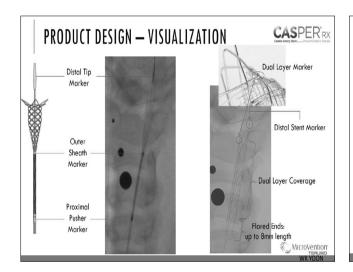


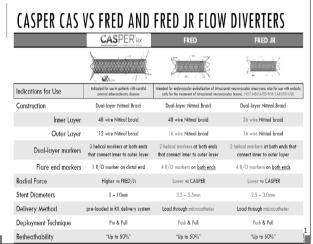




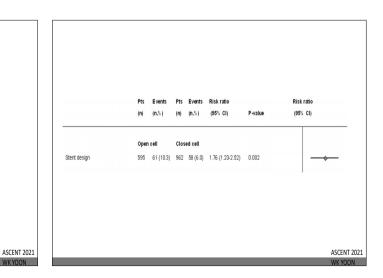


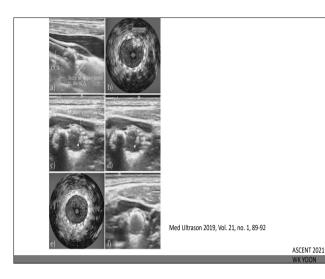


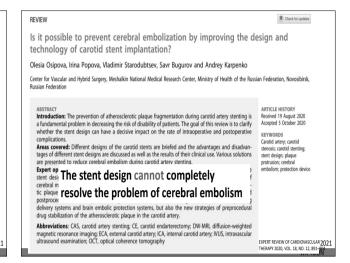



CASPER Double layer Stent - Microvention

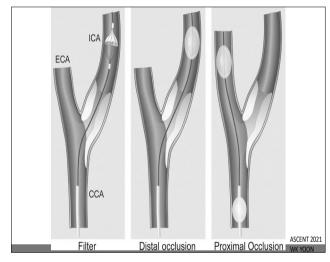
Basic endovascular training course

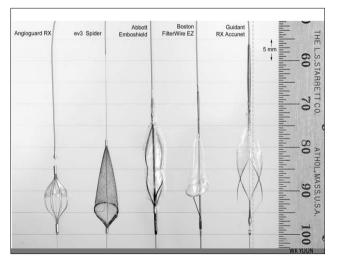


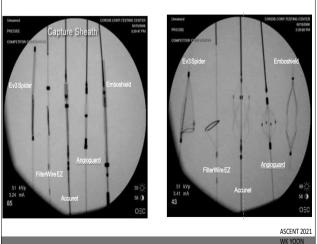


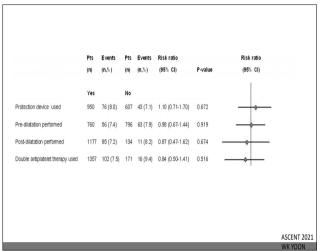

Stent Design and Thromboembolic complication

- Long debate
- J Neurointerv Surg 2018; 10:1149-1154.

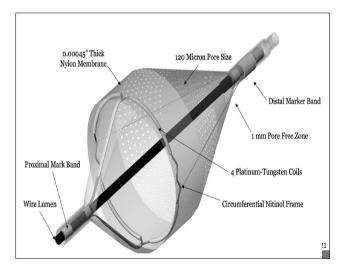

ORIGINAL RESEARCH
Influence of stent design and use of protection devices on outcome of carotid artery stenting: a pooled analysis of individual patient data

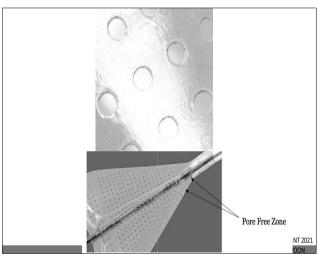


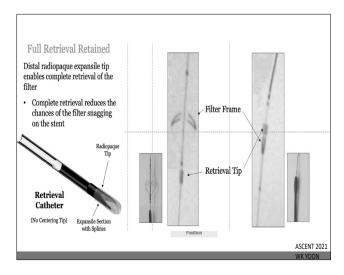


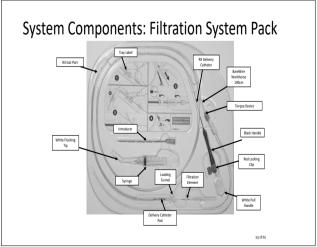

Embolic Protection Device

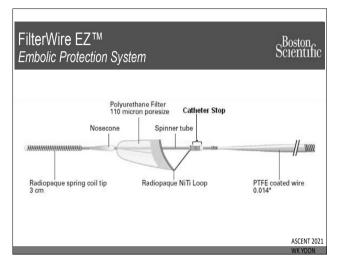


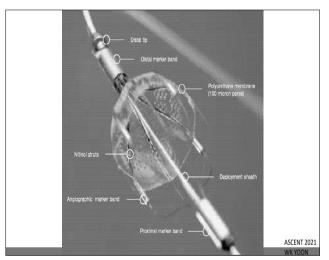


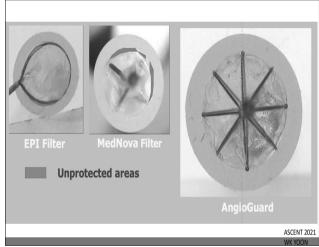


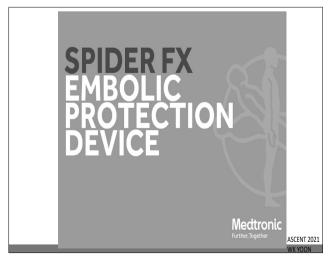

Basic endovascular training course

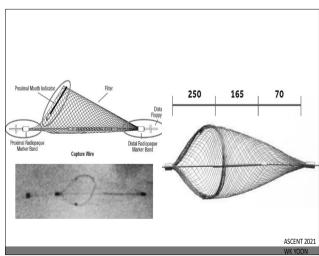


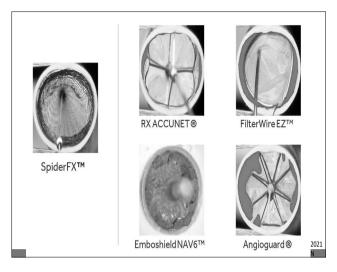


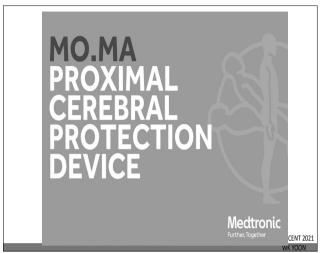


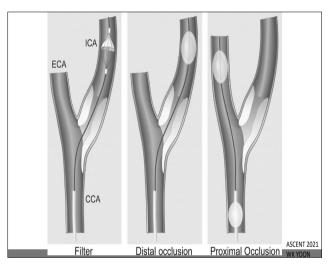


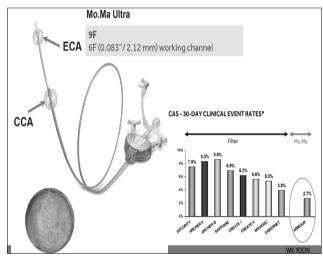


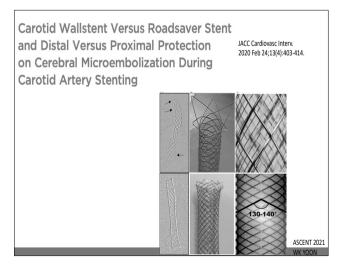


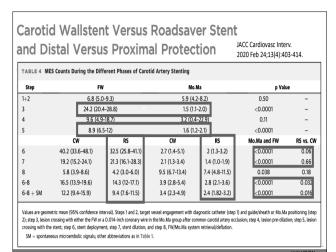


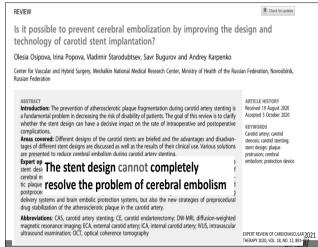


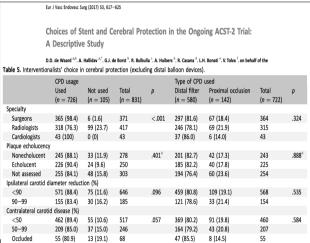


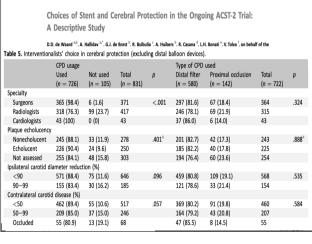


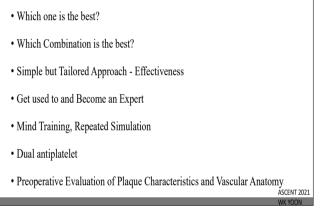



Carotid Stenting in Patients With High Risk Versus Standard Risk for Open Carotid Endarterectomy (REAL-1 Trial)


Joaquin De Haro, MD*, Ignacio Michel, MD, Silvia Bleda, MD, Cristina Cañibano, MD, and Francisco Acin, MD, PhD

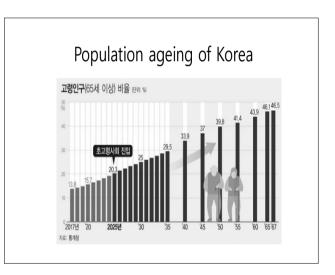

Carotid stenting (CAS) has been mainly offered to those patients considered at "high risk" for open carotid endarferectomy based on available data from large randomized clinicals. However, several recent studies have called medical "high risk" into question for CAS indication. The REAL-1 trial evaluated the safety and perioperative and long-term effectiveness in patients with significant carotid artery stenosis with "high-risk" criteria treated with CAS and proximal protection device (MOMA) compared with those with standard surgical-risk features. This nonrandomized double-arm registry included 125 patients (49% symptomatic), 71 (56%) with "standard-risk" and 54 (44%) with "high-risk" criteria. The primary end point was the cumulative incidence of any major adverse event, a composite of stroke, myocardial infarction, and death within 30 days after the intervention or ipsilateral stroke after 30 days and up to 4 years. There was no significant difference in primary end point rate at 30 days between patients at "standard risk" and those with "high risk" (14% vs. 1.9% respectively; hazard ratio for "standard risk" and those with "high risk" (15% vs. 1.9% respectively; hazard ratio for "standard risk" 1.19,5% CI 0.8 to 1.14, p = 0.9). In conclusion, 4-year postprocedure results demonstrated that CAS with proximal device (MOMA) is safe and effective for patients with and without "high-risk" for carotid endarterectomy. © 2017 Elsevier Inc. All rights reserved. (Am J Cardiol 2017;120:322–326)


CENT 2021



Take Home Message

Patent selection, technical tips and basic tactics


신 병 국

동의의료원 신경외과

Basic Endovascular Training Course

- Patient Selection
- Technical tips
- Basic Tactics

동의의료원 신 병 국

Prevalence of Carotid Stenosis **Table 3.** Prevalence of asymptomatic >50% and >70% stenoses in the general population, stratified for gender and age. Stenosis Males Females <50 years >50% 0.2% 0.0% 0.0% >70% 0.1% 50-59 years >50% 0.7% 0.5% >70% 0.2% 0.1% 60-69 years >50% >70% 0.2% 0.8% 6.0% 70-79 years >50% 3.6% >70% 2.1% 1.0% \geq 80 years >50% 7.5% 5.0% 3.1% ^a Based on analyses from de Weerd M, Greving JP, Hedblad B, Lorenz MW, Mathiesen EB, O'Leary DH. Prevalence of asymptomatic carotid artery stenosis in the general population: an individual participant data meta-analysis. Stroke 2010;41:1294-7.

Patients Selection for CAS

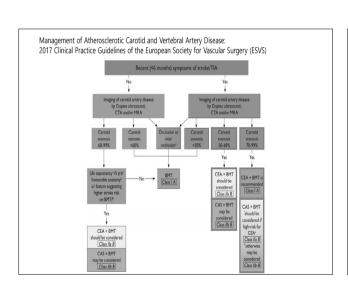
2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/ SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the **Management of Patients With Extracranial** Carotid and Vertebral Artery Disease

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surger

Developed in Collaboration With the American Academy of Neurology and Society of Cardiovascular Computed Tomography

7. Revascularization

7.1. Recommendations for Selection of Patients for Carotid Revascularization*


- 1. Patients at average or low surgical risk who experience nondisabling ischemic stroke[†] or transient cerebral ischemic symptoms, including hemispheric events or amaurosis fugax, within 6 months (symptomatic patients) should undergo CEA if the diameter of the lumen of the insilateral internal carotid artery is reduced more than 70%[‡] as documented by noninvasive imaging (20,83) (Level of Evidence: A) or more than 50% as documented by catheter anglog-raphy (20,70,83,359) (Level of Evidence: B) and the anticipated rate operative stroke or mortality is less than 6%.
- 2. CAS is indicated as an alternative to CEA for symptomatic patients at average or low risk of complications associated with end lar intervention when the diameter of the lumen of the Internal carotid artery is reduced by more than 70% as documented by noninvasive imaging or more than 50% as documented by catheter anglography and the anticipated rate of periprocedural stroke or mortality is less than 6% (360). (Level of Evidence: B)
- Selection of asymptomatic patients for carotid revascularization should be guided by an assessment of comorbid conditions, life expectancy, and other individual factors and should include a thorough discussion of the risks and benefits of the procedure with an understanding of patient preferences. (Level of Evidence: C)

- CLASS IIa

 1. It is reasonable to perform CEAI in asymptomatic patients who have more than 70% stenosis of the internal carotid artery if the risk of perioperative stroke, MI, and death is low (74.76.359.361-363).
- (Level of <u>Evidence</u>: <u>A</u>)

 2. It is reasonable to choose CEA over CAS when revascularization is Indicated in older patients, particularly when arterial pathoanatomy is unfavorable for endovascular intervention (360,364-368). (Level
- It is reasonable to choose CAS over CEA when revascularization is indicated in patients with neck anatomy unfavorable for arterial surgery (369–373).§ (Level of Evidence: B)
- 4. When revascularization is indicated for patients with TIA or stroke and there are no contraindications to early revascularization, intervention within 2 weeks of the index event is reasonable rather than delaying surgery (374), (Level of Evidence: B)

 Prophylactic CAS might be considered in highly selected patients with asymptomatic carotid stenosis (minimum 60% by anglography, 70% by validated Doppler ultrasound), but its effectiveness compared with medical therapy alone in this situation is not well established (360). (Level of Evidence: B)

CEA VS CAS in symptomatic patients

Table 11. 30-day risks following CEA and CAS in trials that randomised >500 recently symptomatic patients into EVA-3S, SPACE, ICSS, and

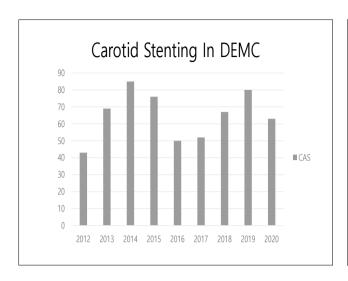
30-day risks	EVA-	3S ¹⁸⁴	SPA	CE ¹⁸⁵	ICS	S ¹⁸⁷	CRE	ST ¹⁸⁹
	CEA	CAS	CEA	CAS	CEA	CAS	CEA	CAS
	n = 262	n = 261	n = 589	n = 607	n = 857	n = 853	n = 653	n = 668
Death	1.2%	0.8%	0.9%	1.0%	0.8%	2.3%		
Any stroke	3.5%	9.2%	6.2%	7.2%	4.1%	7.7%	3.2%	5.5%
Ipsilateral stroke			5.1%	6.4%	3.5%	6.8%		
Disabling stroke	0.4%	2.7%	2.9%	4.1%	2.3%	2.0%	0.9%	1.2%
Death/any stroke	3.9%	9.6%	6.5%	7.4%	4.7%	8.5%	3.2%	6.0%
Disabling stroke/death	1.5%	3.4%	3.8%	5.1%	3.2%	4%		
Clinical MI	0.8%	0.4%			0.5%	0.4%		
Death/stroke/MI					5.2%	8.5%	5.4%	6.7%
Cranial nerve injury	7.7%	1.1%			5.3%	0.1%	5.1%	0.5%

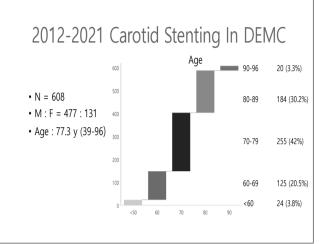
CEA VS CAS in asymptomatic patients

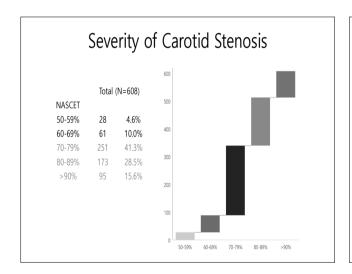
Table 6. 30-day death/stroke in randomised trials comparing CEA and CAS in asymptomatic patients.

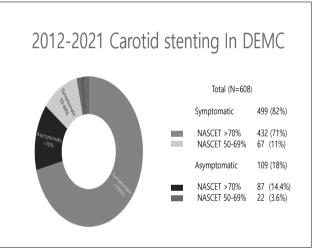
30-day outcomes	Lexingto	on ⁹⁵	CREST-	1 ⁹⁶	ACT-19	7	SPACE-	2 ⁸⁰		Mannh	eim ⁹⁸
	CEA	CAS	CEA	CAS	CEA	CAS	CEA	CAS	BMT	CEA	CAS
	42	43	587	364	364	1089	203	197	113	68	68
Death/stroke	0%	0%	1.4%	2.5%	1.7%	2.9%	2.0%	2.5%	0.0%	1.5%	2.9%
Death/disabling stroke	0%	0%	0.3%	0.5%	0.6%	0.6%		_			
Death/stroke/MI	0%	0%	3.6%	3.5%	2.6%	3.3%				1.5%	2.9%
				054	0	dds Ratio					
	AL	Country	CAS	CEA	٠	uus Muuv					
	Study	Events	lotal E	rents Total		1.7	OF	K 95%-C	I W(fixed)		
	0		10	0 10		- 11			0.00/		
	Brooks	0		0 42		- 11			0.0%		
	Mannheim	2	68	1 68		1.		3 (0.18; 22.93			
	CREST	15		8 587		12		8 [0.79; 4.46			
	ACT1	31	1072	6 348		-18-	1.70	0 [0.70; 4.10	41.0%		
	SPACE2	5	197	4 203	-	-	1.3	0 [0.34; 4.90	17.9%		
	Fixed effect i	model	1974	1248		\$	1.7	1 [0.99; 2.94	100%		
	Heterogeneity:	-squared+0%, tau	-squared-l		_		¬	, , , , , ,			
					0.1 0	5 1 2	10				
				favours CA	s ←		→ favou	irs CEA			

경피적 두개강외 스텐트 삽입술 급여기준 (2019.08)


두개강외(경동맥)에 삽입하는 스텐트는 다음의 경우에 요양급여를 인정 하며, 협착의정도(%)는 NASCET measurement criteria에 따름.


- 다 음 -


두개강외 경동맥 (Extracranial carotid artery)


- 1) 유증상의 50% 이상 경동맥 협착
- 2) 무증상의 70% 이상 경동맥 협착
 - 단, 관류영상 검사 상 관류저하가 확인된 경우
- 3) 기타 (증상 또는 협착의 정도와 상관없이 가능한 경우)
- 가) 반대측 경동맥의 폐색을 동반한 50% 이상의 경동맥 협착
- 나) 가성동맥류(pseudoaneurysm)
- 다) 동정맥루 치료를 위해 다른 방법이 가능하지 않은 경우
- 라) 혈관박리로 인한 혈류 감소 또는 협착

Basic endovascular training course

2012-2021 Carotid stenting In DEMC Total (N=608) 2011 AHA Guideline 2017 ESVS Guideline Symptomatic 499 (82%) 432 (71%) Class I. Level B Class IIa or IIb. Level B NASCET >70% NASCET 50-69% 67 (11%) Class I, Level B Class IIb, Level B Asymptomatic 109 (18%) NASCET >70% 87 (14.4%) Class IIa, Level B Class IIb, Level B NASCET 50-69% 22 (3.6%) Class IIb. Level B Class IIb. Level B

30 days Risks		N (%)
Any Stroke	9	1.48%
Transient Neurological Deficit	6	0.98%
Disabling Stroke	1	0.16%
Death	2	0.33%
Death/Disabling Stroke	3	0.49%
Death/Any Stroke	11	1.8%

Basic Tactics

• 3D imaging

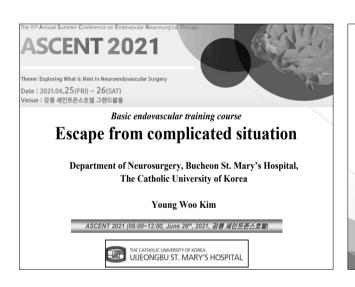
Degree of Stenosis Morphological Topography of atheroma and plaque Working projection Planning (EPD, Ballooning, Stenting)

Technical Tips

- Guiding Support
- Safe wire selection of Stenotic portion
- Delivery of EPD
- Balloon angioplasty
- Selection of stent and Precise Stent Placement
- Safe retrieval of EPD

Case Review & Discussion

Unresolved Carotid Issue


- Is it acceptable in Korea that the risk threshold of CAS is 6%(symptomatic) and 3%(asymptomatic) ?
- New DWI-MRI lesions after CAS, Do these contribute towards cognitive decline?

Thank you for your listening

Escape from complicated situation

김영우

가톨릭대학교 부천성모병원 신경외과

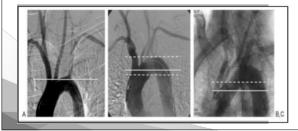
CAS outcome will improve with

CAS related complication: 0.9% ~ 9.3%¹

- ➤ Better patient selection
- ➤ Better devices
- > Technical improvement
- > Additional operator experience

1. Bertog SC et al. J Cardiovasc Surg. 2013

Risk factors of CAS complications


Table 2. Features Suggested to Increase the Risk of a Carotid Stent Procedure

Medical comorbidity	Anatomic criteria	Procedural factor		
Elderly (>75/80 years)	Type III aortic arch	Inexperienced operator/center		
Symptom status	 Vessel tortuosity 	EPD not used		
Hypercoaguable state	Heavy calcification	Lack of femoral access		
Bleeding risk	Lesion related thrombus	Time delay from onset of symptoms		
Chronic kidney disease	Echolucent plaque	Open cell versus closed cell stent		
Decreased cerebral reserve	Aortic arch atheroma			

White Cj et al. Cath & Card Vasc Int. 2013

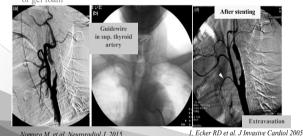
Aortic Arch complexity

- > Classified based on the origins of the great vessels
 - Type I origins are level with upper convexity
 - Type II origins are between the upper and lower convexity
 - Type III origins are caudal to lower convexity

Technique

- ➤ 1. DAPT (at least for 5-7 days)
- ➤ 2. Local anesthesia
- ≥ 3. Place guiding catheters in CCA: about 40% of the major complications¹
- ➤ 4. Cross the stenosis with microwire
- > 5. Place PED
- ➤ 6. Pre-dilatation with small balloon
- > 7. Place stent
- ≥ 8. Post-dilatation, if needed
- > 9. Removal of PED and sheath

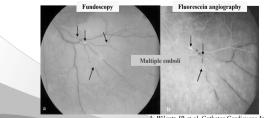
1. Verzini F et al. Vasc. Surg. 2006


Possible Complications

- > 1. ECA branch perforation
- ≥ 2. CCA dissection
- > 3. Ophthalmic & Retinal artery embolization
- ➤ 4. ECA compromise
- > 5. ICA occlusion (Flow arrest) !!
- ➤ 6. Embolic complication
- 7. Difficulty with filter removal
- > 8. Carotid perforation
- > 9. Access site complications
- > 10. Other technical problems
- 11. Transient bradycardia and hypotension
- > 12. Cerebral hyperperfusion
- > 14. Contrast encephalopathy


1. ECA branch perforation

- ➤ Caused by positioning a stiff 0.035 inch wire into the ECA to provide support for guide sheath into the CCA
- > Rescue Tx.: Prolonged balloon inflation or embolization using coils, glue,


2. CCA dissection

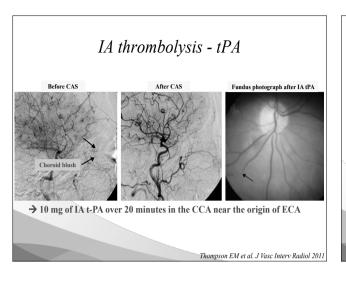
- > Caused by aggressive manipulation of the guiding catheter against the arterial wall
- Rescue Tx.
 - · Non-flow limiting: Observation
 - Flow limiting: Additional stenting

3. Ophthalmic & Retinal artery embolization

- $ightharpoonup 4 \sim 15\%$ (Symptomatic: 0.2~1.7%) ^{1,2}
- > Caused by embolus migration
 - via the ICA and ophthalmic a.
 - via orbital branch of MMA → recurrent br. of lacrimal a.

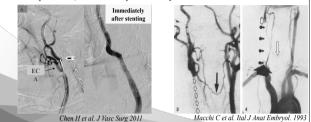
1. Wilentz JR et al. Catheter Cardiovasc Interv 2002

2. J.A Vos M.H. et al. Cardiovasc Intervent Radiol. 2010


Rescue Tx.

- ➤ No standard rescue Tx. → Consider IA thrombolysis (like Tx. for CRAO)
- ➤ IA thrombolysis
 - tPA1 (10mg)
 - UK² (10,000 units/min → total of maximum 1 million units)
 - Glycoprotein IIb/IIIa inhibitors³
 - Eptifibatide (180 μ g/kg bolus + 2μ g/kg/min for 18 hours)
- 0.4 μg/kg/min for 30 mins. + 0.10 μg/kg/min maintenance infusion⁴
- ➤ Conventional therapies (after procedure) → Ophthalmology consultation!

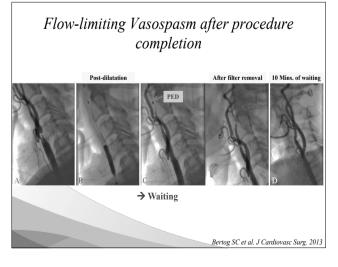
 - Topical timolol (β-blocker), IV acetozolamide and mannitol
 - Ant. Chamber tap

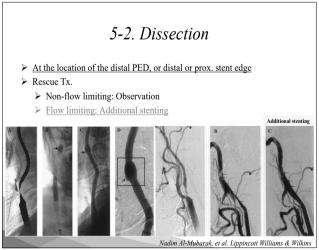

Hyperbaric oxygen therapy

- Thompson EM et al. J Vasc Interv Radiol 2011
 Zhang X et al. neurol Res. 2009
- 3. Bertog SC et al. J Cardiovasc Surg. 2013 4. Luisa Peroo et al. Eur J Ophthalmol 2016

4. ECA compromise

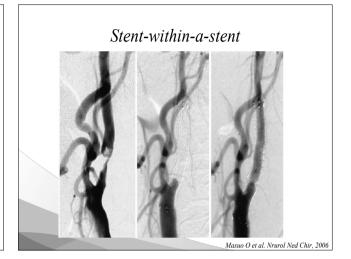
- > Caused by plaque shifting after stenting
- Well tolerated d/t rich network of collaterals from the contralat. ECA & insilateral ICA
- ➤ Jaw claudication: ECA occlusion → maxillary a. occlusion (masseter and temporalis m.) → resolves spontaneously with time


5. ICA occlusion (Flow arrest)!!

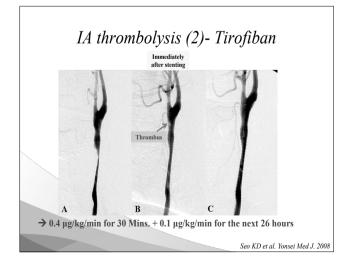

- > Usually the consequence of
 - 5-1. Vasospasm
 - 5-2. Dissection
 - 5-3 Acute thrombosis
 - 5-4 Filter occlusion (m/c, 8~30%)^{1,2}

1. Bonaldi G et al. J Neuroraiol. 2005 2. Kwon BJ et al. J Endovasc Ther. 2006

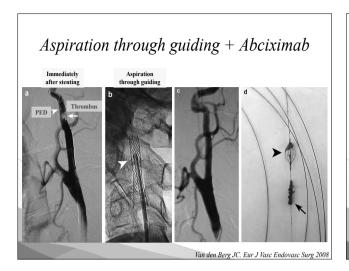
5-1. Vasospasm


- ➤ Usually occurs related to the PED
- Rescue Tx.
 - Non-flow limiting
 - Procedure completion \rightarrow filter removal \rightarrow <u>waiting a few minutes</u>
 - Flow limiting
 - Wire should not be removed
 - Immediate vasodilator (IA nitroglycerine 100-400 μg / nicardipine 200-400 $\mu g)$
 - · Stenting or balloon dilatation: strictly avoided

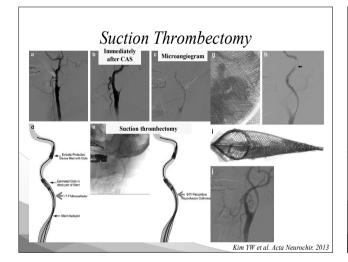
5-3. Acute stent thrombosis (AST)


- ▶ 0.5% ~ 2%
- Rescue Tx.
 - Stent underexpansion → balloon angioplasty
 - Protruding plaque or dissection
 - prolonged balloon inflation, if tolerable
 - stent-within-a-stent1
 - IA thrombolysis (UK, rtPA, GP IIb-IIIa inhibitor)
 - Abciximab2~4 or Tirofiban5
 - Thromboaspiration through guiding or sheath
 - Suction thrombectomy (Penumbra)^{6,7}
 - Surgical management → stent removal & CEA⁸
- 1. Masuo O et al. Nrurol Ned Chir, 2006) 3. Steiner-Boker S et al. AJNR. 2004 5. Seo KD et al. Yonsei Med J. 2008
- 7. Munich S et al. J Neurointerv Surg. 2014)
- 2. Bush RL et al. J Endovasc Ther 2003
- 4. Van den Berg JC. Eur J Vasc Endovasc Surg 2008 6. Kim YW et al. Acta Neurochir. 2013
- 8. Setacci C et al. J Vasc Surg 2005

5-3. Acute stent thrombosis (AST)


- ▶ 0.5% ~ 2%
- Rescue Tx.
 - Stent underexpansion → balloon angioplasty
 - Protruding plaque or dissection
 - prolonged balloon inflation, if tolerable
 - · stent-within-a-stent1
 - IA thrombolysis (UK, rtPA, GP IIb-IIIa inhibitor)
 - Abciximab2~4 or Tirofiban5
 - Thromboaspiration through guiding or sheath
 - Suction thrombectomy (Penumbra)^{6,7}
 - Surgical management → stent removal & CEA⁸
- 1. Masuo O et al. Nrurol Ned Chir, 2006) 3. Steiner-Boker S et al. AJNR, 2004 5. Seo KD et al. Yonsei Med J. 2008
- 7. Munich S et al. J Neurointerv Surg. 2014)
- 2. Bush RL et al. J Endovasc Ther 2003
- 4. Van den Berg JC. Eur J Vasc Endovasc Surg 2008 6. Kim YW et al. Acta Neurochir. 2013 8. Setacci C et al. J Vasc Surg 2005

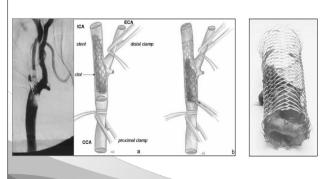
IA thrombolysis (1) - tPA + AbciximabB → tPA (5mg via guiding + 5mg systemic) + IA abciximab 0.125 mg/kg Steiner-Boker S et al. A.INR 2004


5-3. Acute stent thrombosis (AST)

- ▶ 0.5% ~ 2%
- Rescue Tx.
 - Stent underexpansion → balloon angioplasty
 - Protruding plaque or dissection
 - prolonged balloon inflation, if tolerable
 - stent-within-a-stent1
 - IA thrombolysis (UK, rtPA, GP IIb-IIIa inhibitor)
 - Abciximab^{2~4} or Tirofiban⁵
 - Thromboaspiration through guiding or sheath
 - Suction thrombectomy (Penumbra)^{6,7}
 - Surgical management → stent removal & CEA⁸
- 1. Masuo O et al. Nrurol Ned Chir, 2006)
- 3. Steiner-Boker S et al. AJNR. 2004 5. Seo KD et al. Yonsei Med J. 2008
- 7. Munich S et al. J Neurointerv Surg. 2014)
- 2. Bush RL et al. J Endovasc Ther 2003
- 4. Van den Berg JC. Eur J Vasc Endovasc Surg 2008 6. Kim YW et al. Acta Neurochir. 2013
- - 8. Setacci C et al. J Vasc Surg 2005

5-3. Acute stent thrombosis (AST)

- > 0.5% ~ 2%
- Rescue Tx.
 - Stent underexpansion → balloon angioplasty
 - Protruding plaque or dissection
 - prolonged balloon inflation, if tolerable
 - stent-within-a-stent1
 - IA thrombolysis (UK, rtPA, GP IIb-IIIa inhibitor)
 - Abciximab2~4 or Tirofiban5
 - Thromboaspiration through guiding or sheath
 - Suction thrombectomy (Penumbra)^{6,7}
 - Surgical management → stent removal & CEA⁸
- 2. Bush RL et al. J Endovasc Ther 2003
- 1. Masuo O et al. Nrurol Ned Chir, 2006) 3. Steiner-Boker S et al. AJNR. 2004 5. Seo KD et al. Yonsei Med J. 2008
- 4. Van den Berg JC. Eur J Vasc Endovasc Surg 2008 6. Kim YW et al. Acta Neurochir. 2013
- 7. Munich S et al. J Neurointerv Surg. 2014)
- 8. Setacci C et al. J Vasc Surg 2005



5-3. Acute stent thrombosis (AST)

- ▶ 0.5% ~ 2%
- Rescue Tx.
 - Stent underexpansion → balloon angioplasty
 - Protruding plaque or dissection
 - prolonged balloon inflation, if tolerable
 - · stent-within-a-stent1
 - IA thrombolysis (UK, rtPA, GP IIb-IIIa inhibitor)
 - Abciximab2~4 or Tirofiban5
 - Thromboaspiration through guiding or sheath
 - Suction thrombectomy (Penumbra)^{6,7}
 - Surgical management → stent removal & CEA⁸
- 1. Masuo O et al. Nrurol Ned Chir. 2006 3. Steiner-Boker S et al. AJNR. 2004 5. Seo KD et al. Yonsei Med J. 2008

- 2. Bush RL et al. J Endovasc Ther. 2003 4. Van den Berg JC. Eur J Vasc Endovasc Surg .2008 6. Kim YW et al. Acta Neurochir. 2013
- 7. Munich S et al. J Neurointerv Surg. 2014
- 8. Setacci C et al. J Vasc Surg. 2005

Surgical management

Setacci C et al. J Vasc Surg. 2005

5-4. Filter occlusion

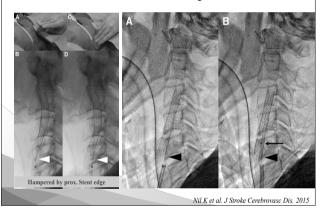
- > d/t large burden of embolic material in the filter obstructing flow
- Rescue Tx.
 - 1. Rule out other causes (dissection, spasm, or thrombus in the stent)
 - 2. Thromboaspiration through guiding (50-100 cc) of ICA blood
 - 3. Thromboaspiration with aspiration catheter as close to the filter
 - 4. Filter retrieval

6. Embolic complication

- ➤ Thromboembolism after CAS: 0.04~2%
- Rescue Tx. (Like Tx. for AIS)
 - Wire or microcatheter passage
 - Balloon angioplasty
 - IA tPA/UK and/or eptifibatide or abciximab
 - Under balloon guiding
 - Mechanical neuro-rescue Aspiration or thrombus extraction

7. Difficulty with filter removal

- > 7.7~10.2%¹
- > 7-1. Difficulty with passing the retrieval sheath through the deployed stent
 - - 1) the protruding struts of the stent (esp. due to its open cell type nature of the stent)
 - 2) the acute angle between stents and CCA
- > 7-2. PED entrapment within the stent


Bertog SC et al. J Cardiovasc Surg. 2013

Rescue Tx.

> 7-1. Difficulty with passing the retrieval sheath through the deployed stent

- 1. Advance guiding catheter close to or into the stented segment
- 2. Turning head, deep breath, & cough
- 3. Manual carotid compression^{1,2} (lateral or vertical pressure)
 - → straighten the angle between stent and the CCA
- 4. Angled 5F catheter^{3,4}
 - →The tip directed away from the impeding stent strut
 - → If monorail system-EPD, creating a hole near
- 5. Balloon advancement
- If the filter shears off the wire → retrieval with a snare
- > 7-2 PED entrapment within the stent
 - To-and-Pro motion → Surgical removal
- 1. Watanabe M, et al. J Vasc Interv Neurol 2013 2. Nil K et al. J Stroke Cerebrovasc Dis. 2015
- 3. Daugherty WP et al. AJNR, 2008
- 4. Ahn SH et al. Semin Intervent Radiol 2013)

Manual carotid compression

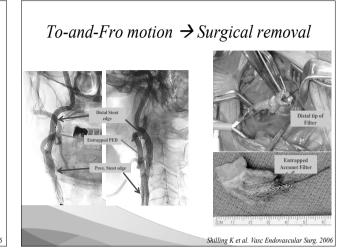
Rescue Tx.

> 7-1. Difficulty with passing the retrieval sheath through the deployed stent

- 1. Advance guiding catheter close to or into the stented segment
- 2. Turning head, deep breath, & cough
- 3. Manual carotid compression^{1,2} (lateral or vertical pressure) → straighten the angle between stent and the CCA
- 4. Angled 5F catheter^{3,4}
 - →The tip directed away from the impeding stent strut
 - → If monorail system-EPD, creating a hole near
- . 5. Balloon advancement
- If the filter shears off the wire → retrieval with a snare

> 7-2 PED entrapment within the stent

- To-and-Pro motion → Surgical removal
- 1. Watanabe M, et al. J Vasc Interv Neurol 2013 2. Nil K et al. J Stroke Cerebrovasc Dis. 2015
- 3. Daugherty WP et al. AJNR, 2008
- 4. Ahn SH et al. Semin Intervent Radiol 2013)


Angled catheter (5F diagnostic catheter) Angled catheter Distal Stent edg

Ahn SH et al. Semin Intervent Radiol 2013

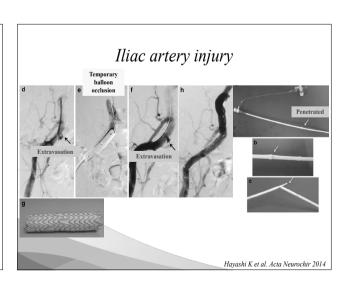
Rescue Tx.

- > 7-1. Difficulty with passing the retrieval sheath through the deployed stent
 - 1. Advance guiding catheter close to or into the stented segment
 - 2. Turning head, deep breath, & cough
 - 3. Manual carotid compression^{1,2} (lateral or vertical pressure)
 - → straighten the angle between stent and the CCA
 - 4. Angled 5F catheter^{3,4}
 - →The tip directed away from the impeding stent strut
 - → If monorail system-EPD, creating a hole near
 - 5. Balloon advancement
 - 6. Post-dilatation
 - If the filter shears off the wire → retrieval with a snare
- > 7-2 PED entrapment within the stent
 - To-and-Pro motion → Surgical removal
- 1. Watanabe M, et al. J Vasc Interv Neurol 2013

- 1. Walandoë M, et al. J Stroke Cerebrovasc Dis. 2015
 2. Nil K et al. J Stroke Cerebrovasc Dis. 2015
 3. Daugherty WP et al. AJNR, 2008
 4. Ahn SH et al. Semin Intervent Radiol. 2013
 5. Shilling K et al. Vasc Endovascular Surg. 2006

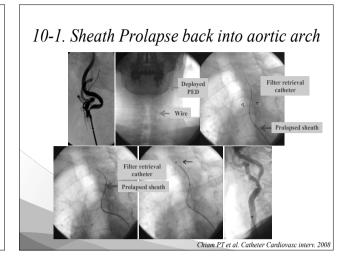
8. Carotid perforation

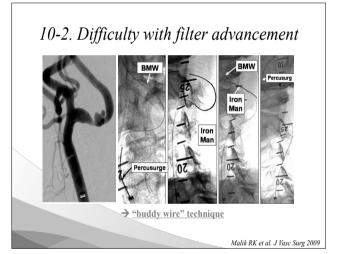
- > < 0.1%
- ➤ Caused by <u>aggressive pre- and postdilatation</u> → Leakage of the contrast from the ICA
- Rescue Tx.
 - Heparin reverse (protamine sulfate) + immediate and prolonged soft balloon inflation
 - Covered stent implantation (concern for a higher thrombosis rate)

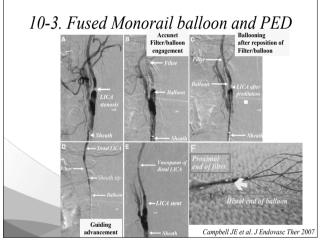

Dieter RS et al. Catheter Cardiovasc Interv 2006

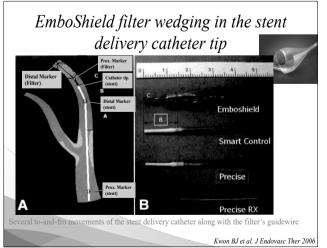
Covered stent stenting with JOSTENT Dieter RS et al. Catheter Cardiovasc Interv 2006

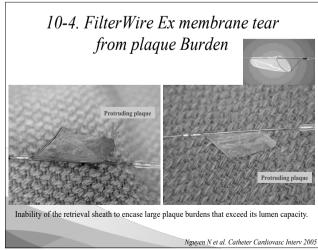
9. Access site complications

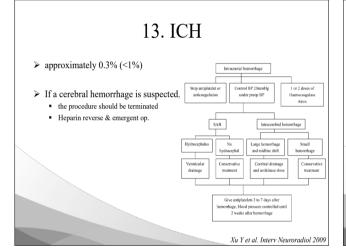

- ▶ 1~1.3%¹
- > Utility of closure devices: controversial
- > Pseudoaneurysm2
 - Risk factors: HTN, DM, CAD, BMI ↑, Catheter diameter ↑
 - - <2cm: spontaneous resolution without treatment
 - · Larger or symptomatic:
 - Thrombin injection or prolonged ultrasound guided compression
 - Surgical repair (4.7%)
- > AVF: surgical closure or covered stent


1. Bertog SC et al. J Cardiovasc Surg. 2013 2. Ates M et al. J. Vasc. Surg. 2006




10. Other technical problems


- > 10-1. Guiding or Sheath Prolapse back into aortic arch
- ➤ 10-2. Difficulty with advancement of filter
- ➤ 10-3. Fused Monorail balloon and PED
- ▶ 10-4. FilterWire Ex membrane tear


11. Transient bradycardia and hypotension

- > 29~70% (vary depending on the definition)^{1,2}
- > Caused by wall strain on the carotid sinus related to balloon inflation or stent implantation
- > Prevention
 - · temporary pacemaker prior to the stenting
 - pretreatment with 0.5 to 1 mg of IV atropine
 - caution in elderly: Large doses → confusion, blurry vision, urinary retention, dry mouth (10-20%)
- Rescue Tx.
 - · Awake consciousness by beating chest
 - · Hydration and/or small dose of IV vasopressors
 - If Symptomatic hypotention → norepinephrine or dopamine (bradycardia)
 - 1. Yadav JS et al Circulation 1997

 - Diehm N et al. J Vasc Interv Radiol. 2008
 Qureshi AI et al. Stroke-a journal of cerebral circulation. 1999

12. Cerebral hyperperfusion

- Following CEA and CAS: 0.3~2.7% and 1.1%, respectively
- > Typically occurs in patients with
 - · severe stenosis and poor collateral circulation,
 - · particularly in those with complete occlusion of the contralateral ICA or patients with an underdeveloped circle of Willis.
- ➤ Related to long-standing hypoperfusion → impaired autoregulation
- > Strict BP control

14. Contrast encephalopathy

- > <0.1%
- > Etiology: extravasation of contrast via a compromised BBB
- > Neurologic deficit: cortical blindness and altered level of consciousness
- CT: contrast enhancement in the ipsilateral basal ganglia and cortex or sulcal enhancement
- Resolve without treatment usually within 24 hours

Take home message

- > CAS is not difficult, but, complication is the main issue.
- > Prevention is the best way, but it is impossible to avoid complication. → "informed consent!"
- > Recognize possible factors associated with an increased risk of complications.
- A cautious and tailored approach are mandatory.

The 15th Annual Summer Conference on Endovascular Neurosurgical Therapy

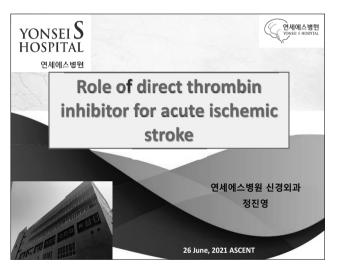
6/26(Sat.)

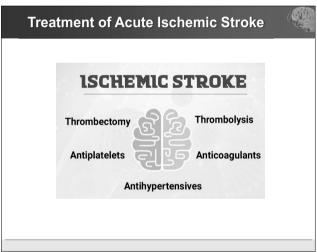
Luncheon seminar

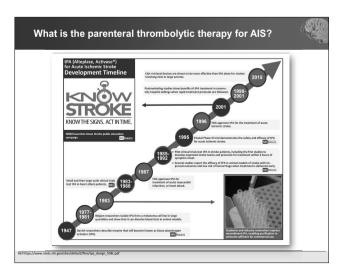
좌장: 이창영(계명대) / 김문철(에스포항병원)

1. Role of direct thrombin inhibitor for acute ischemic stroke

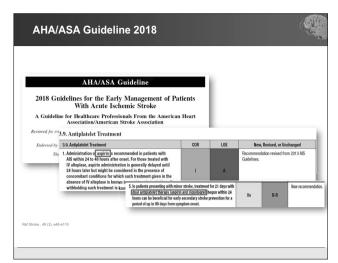
정진영(연세에스병원)

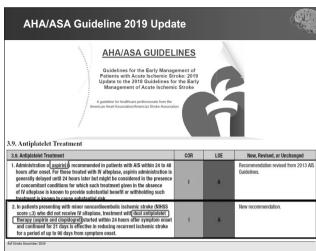

2. Safety and feasibility of using Argatroban

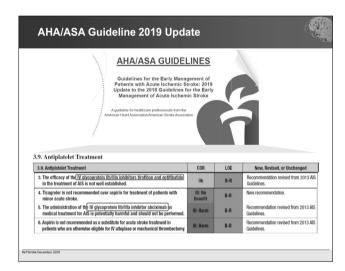

이동훈(가톨릭대)

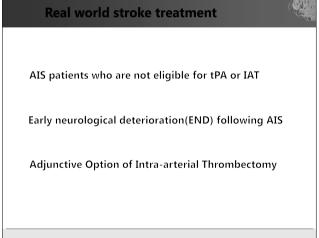

Role of direct thrombin inhibitor for acute ischemic stroke

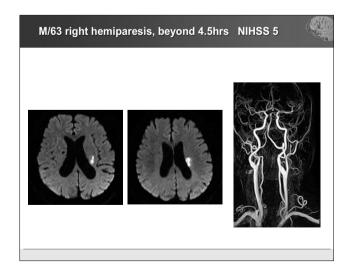
정진영

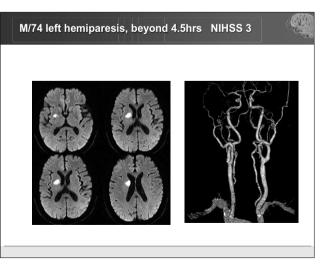

연세에스병원 신경외과

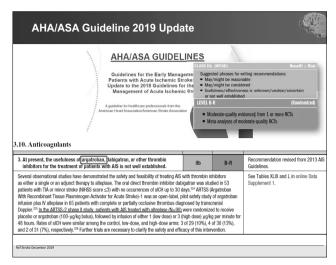


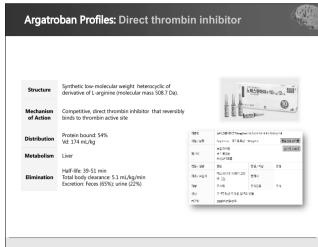


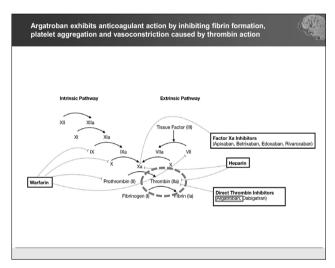


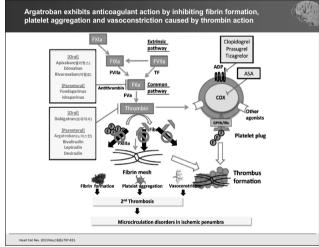


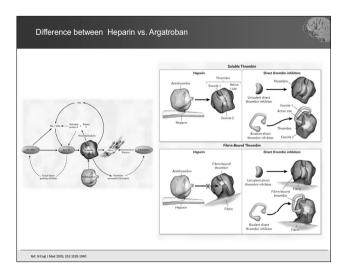


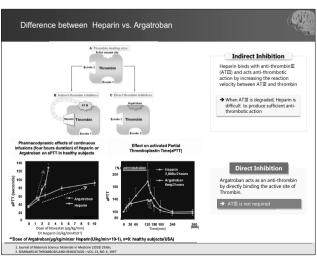


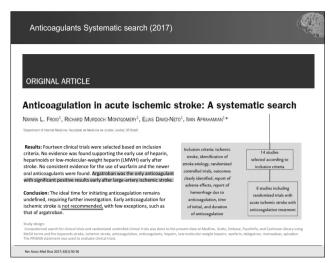


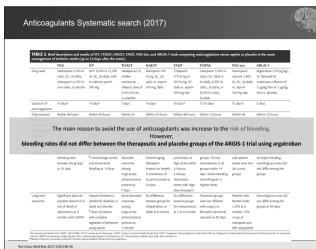


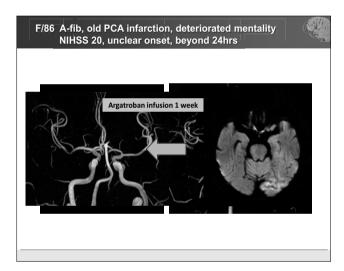


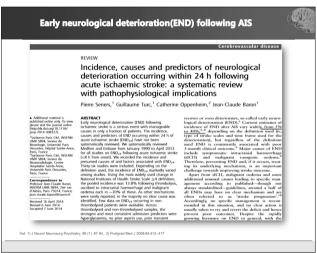


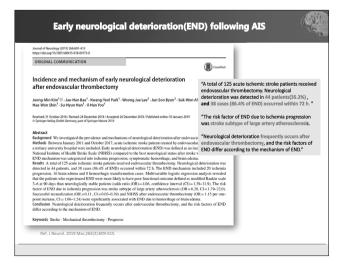


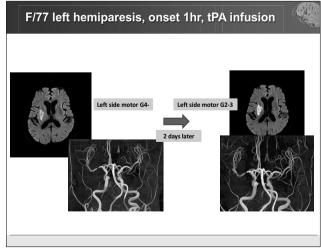


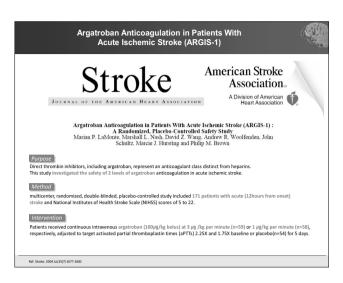


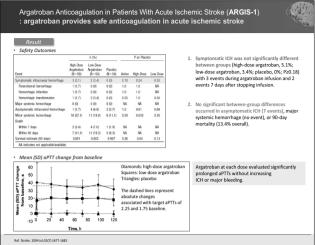


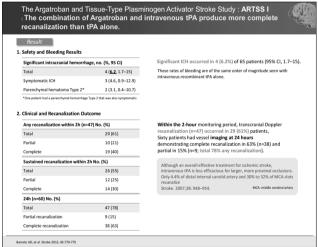


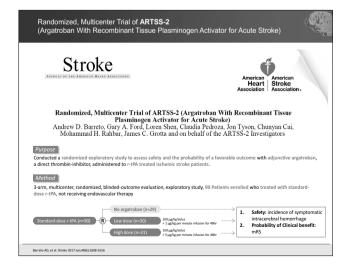


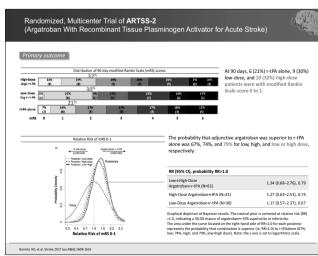




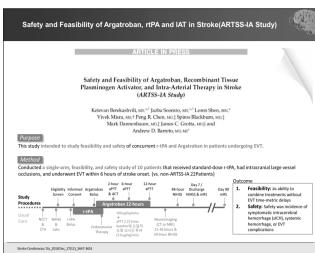


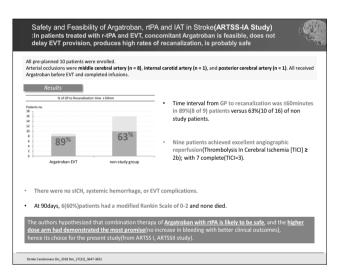


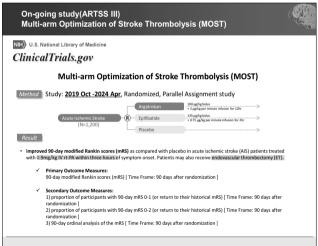


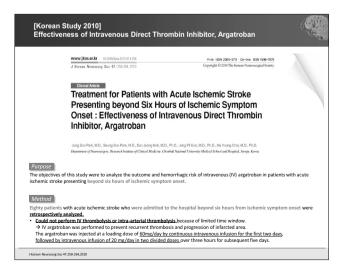


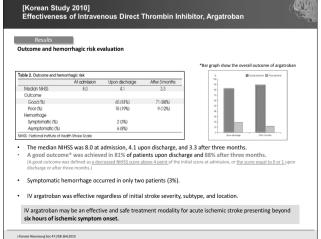


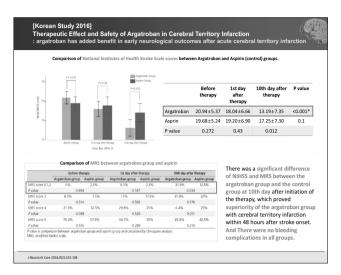


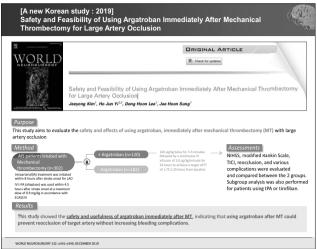


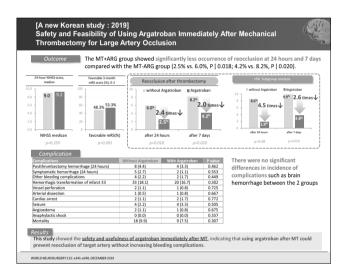


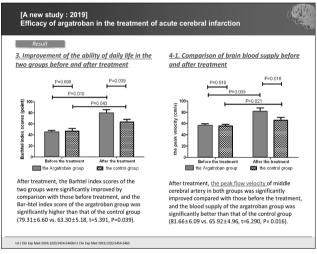


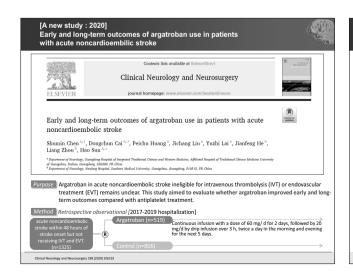


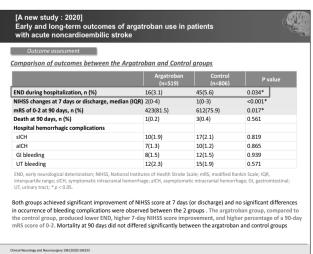


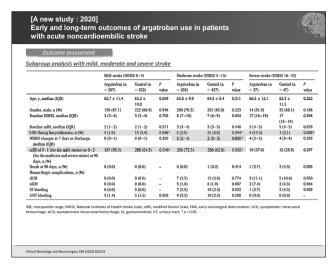


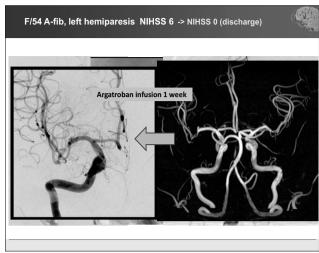












Conclusion

IV Argatroban may be an effective and safe treatment modality for acute ischemic

AIS patients who are not eligible for tPA or IAT

for prevention of Early neurological deterioration(END)

Adjunctive Option of Intra-arterial Thrombectomy

Safety and feasibility of using Argatroban

Dong Hoon Lee¹, Jae Hoon Sung¹, Ho Jun Yi², Seung Yoon Song¹, Dong Sub Kim¹

¹Department of Neurosurgery, St. Vincent's Hospital, The Catholic University of Korea ²Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea

Background: This study aims to evaluate the safety and effects of using argatroban, immediately after mechanical thrombectomy (MT) with large artery occlusion.

Methods: A total of 302 patients were divided into 2 groups: the MT with post argatroban (MT+ARG) group and the MT without post argatroban (MT-ARG) group. Baseline characteristics, time interval categories, and results of MT were reviewed. Outcome assessment with the National Institutes of Health Stroke Scale, modified Rankin Scale, TICI, reocclusion, and various complications were evaluated and compared between the 2 groups. Subgroup analysis was also performed for patients using tissue plasminogen activator or tirofiban.

Results: Baseline characteristics and time intervals were similar for the 2 groups. The MT+ARG group showed significantly less occurrence of reocclusion at 24 hours and 7 days compared with the MT-ARG group (2.5% vs. 6.0%, P = 0.018; 4.2% vs. 8.2%, P = 0.020). However, there were no significant differences in incidence of complications such as brain hemorrhage between the 2 groups. In subgroup analysis with tissue plasminogen activator, the MT+ARG group showed less occurrence of reocclusion at 24 hours and 7 days compared with the MT-ARG group (P = 0.008 and P = 0.018, respectively). In subgroup analysis with tirofiban, reocclusion at 7 days occurred less in the MT+ARG group (P = 0.040).

Conclusions: This study showed the safety and usefulness of argatroban immediately after MT, indicating that using argatroban after MT could prevent reocclusion of target artery without increasing bleeding complications.

The 15th Annual Summer Conference on Endovascular Neurosurgical Therapy **SCENT 2021**

Theme: Exploring What is Next in Neuroendovascular Surgery

6/26(Sat.)

Free paper III: Early experiences by young gun in EVT

좌장: 성재훈(가톨릭대) / 신승훈(차의과학대)

FP3-1	Complications and solutions in treating cerebral arteriovenous malformation with liquid-embolic materials; Beginner's personal experience	조동영 (이화여자대학교 서울병원)
FP3-2	Contrast neurotoxicity after coil embolization for cerebral unruptured aneurysm mimicking subarachnoid hemorrhage	김학성 (중앙보훈병원)
FP3-3	Intractable seizure after endovascular coil embolization of unruptured paraclinoid aneurysm	윤별희 (의정부 을지대학교병원)
FP3-4	Framing coil total prolapse due to stretched coil stuck in a microcatheter	정동환 (한림대학교 동탄성심병원)
FP3-5	First voyage as a neurosurgery vascular surgeon	박재원 (천안충무병원)
FP3-6	The use of contralateral angioplasty to improve collateral flow in case of difficulty in initial EVT position	최연주 (에스포항병원)
FP3-7	Early-visit patients with poor clinical outcomes after successful recanalization with multiple retrieval attempts	김승환 (성균관대학교 삼성창원병원)
FP3-8	Safety and efficacy of mechanical thrombectomy using balloon- expandable stent deployment as a rescue therapy after failed stent retriever thrombectomy — young gun in EVT (Case report)	김상영 (에스포항병원)

Complications and solutions in treating cerebral arteriovenous malformation with liquid-embolic materials; Beginner's personal experience

Dong Young Cho, Jung Jae Kim, Eu Kyo Seo

Department of Neurosurgery, Ewha Womans University Seoul Hospital

Objective: Cerebral arteriovenous malformations (AVM) are usually treated with endovascular treatment using liquid-embolic material. Herein, we would introduce two cases which were successfully treated after periprocedural complications.

Methods: First case was 40-year-old male presenting AVM involving Rt. frontal lobe with 12mm sized nidus and 2 arterial feeders from ACA, and single draining to superior sagittal sinus. During endovascular treatment with onyx embolization, onyx material was refluxed to proximal feeder, and Rt. ACA was occluded. Second case was 41-year-old male with AVM involving Lt. temporal lobe. The nidus size was 38mm, with 2 feeders from Lt. MCA and 1 feeder from Lt. PCA, and draining veins to sigmoid sinus and Lt. cavernous sinus. The patient was planned to be treated with 2 stage method, partial occlusion of nidus with onyx embolization and surgical resection on next day. During the procedure, leakage of onyx material was observed, and postoperative CT scan showed intracranial hemorrhage with subarachnoid hemorrhage. The patient showed global aphasia postoperatively.

Result: First case with ACA occlusion was treated with mechanical embolectomy with thrombectomy device. After 2 trials of embolectomy, Onyx fragment was removed, and ACA flow was successfully recanalized. The patient was neurologically free after the procedure. In second case, we underwent emergency craniotomy and nidus removal. After the surgery, patient's neurologic symptoms were fully recovered after few days and discharged without neurologic deficit.

Conclusion: Appropriated solution after periprocedural complications in treating AVM with liquid-embolic materials is important., which might result in minimizing of mortality and morbidity of the patient.

Contrast neurotoxicity after coil embolization for cerebral unruptured aneurysm mimicking subarachnoid hemorrhage

Hak Sung Kim, In Ho Oh, Ji Hye Lee, Moon Hee Han

Department of Neurosurgery, Veterans Hospital Service Medical Center

Objective: To report our case with non-ionic contrast neurotoxicity after coil embolization for cerebral unruptured aneurysm that was recovered spontaneously.

Methods: A 69-years old female was admitted to our hospital for coil embolization of left supraclinoid internal carotid artery(ICA) unruptured aneurysm. Coil embolization was performed under general anesthesia and the procedure was successfully completed. However, 3 hours after surgery, mental deterioration, weakness in right extremities and right facial palsy was noted. In addition, high fever with unknown origin and seizure attack occurred.

Result: Emergent non-contrast brain CT and diffusion-weighted image(DWI) MRI were performed. On DWI, no evidence of abnormal bright signal intensity in the brain parenchyma, but on brain CT, faint and diffuse enhancement of left cerebral hemisphere with increased density of left cortical subarachnoid spaces was identified. Fortunately, the patient fully regained consciousness, orientation and muscular strength after 2 days. In parallel, as observed with repeat CT scans, sulcal hyperdensities completely faded out.

Conclusion: Contrast induced neurotoxicity is rare complication after endovascular treatment. Probably, the cause of these complications is the disruption of the blood-brain barrier and contras extravasation. In most cases, these neurological symptoms are considered to resolve spontaneously.

Intractable seizure after endovascular coil embolization of unruptured paraclinoid aneurysm

Byul Hee Yoon, Young Ki Park, Duk Ryung Kim, Byung Gwan Moon

Department of Neurosurgery, Uijeongbu Eulji Medical Center

Objective: Unruptured paraclinoid aneurysms have been treated to endovascular coil embolization and the most common complication of endovascular coil embolization is an ischemic event, and other complications are so rare that they are often overlooked. This case study corresponds to the consideration of this overlooking.

Methods: The patient is a 68-year-old female patient with hypertension, diabetes, and previous allergic skin rash for contrast, who underwent coil embolization for incidental unruptured aneurysm. Coil embolization was completed successfully and no events during procedure. Six hours after embolization, she showed aphasia and hemiparesis. Some embolic events were identified in magnetic resonance diffusion, but there was no clinical correlation with symptoms. Computed tomography angiogram showed no vascular abnormalities, but she got progressively worse and showed global aphasia and hemiplegia. And, there were no singularities in diffusion and electroencephalogram followed up over time. On the second day, clinical seizure was showed 3 times and loading of antiepileptic drugs were administered. Three hours after the last clinical seizure, all previous symptom was recovered dramatically except for mild sensory aphasia and she recovered completely when she was discharged.

Result: The pathophysiology of seizure after coil embolization in unruptured aneurysms has not been elucidated. In this case study, there were many risk factors that were considered, such as old age, two or more comorbid diseases, and a kind of neurotoxicity associated with contrast media. Despite successful coil embolization of unruptured aneurysm, these risk factors may have contributed to seizures.

Conclusion: It should always be kept in mind about seizures and Todd's paralysis during or after coil embolization in relation to the patient's neurologic symptoms as well as ischemic events. For patients with many comorbid disease or previous allergic skin rash for contrast, preoperative AED may be considered. And continuous EEG can be helpful for diagnosis when neurologic symptom occurred.

Framing coil total prolapse due to stretched coil stuck in a microcatheter

Donghwan Jeong

Department of Neurosurgery, Hallym University Dongtan Sacred Heart Hospital

Objective: Coil stretching is not uncommon mechanical complication of coil embolization. Here, the author presented a case report of a patient with framing coil total prolapse due to stretched coil stuck in the microcatheter.

Methods: A patient with an unruptured paraclinoid aneurysm was undergoing an elective coil embolization. Double catheter method was planned. When the frame coil was almost made, the coil was stretched and stuck in the microcatheter. The stretched coil was detached unintentionally while push wire manipulation. Small helical coil was used for pushing the coil but failed to push out the stretched coil. A careful microcatheter withdrawal was performed but stretched coil was not movable in the microcatheter. The frame coil was prolapsed totally from the aneurysm stuck in the microcatheter. Subarachnoid hemorrhage was not detected by cone beam computed tomography. The escaped coil was withdrawn with a guiding catheter at sheath level. We retrieved the coil with a snare kit safely. Afterward, double catheter coil embolization was performed successfully. After 2 days, the patient was released from hospital without neurologic deficit.

Result: Successful coil embolization without complication was confirmed with post procedural magnetic resonance imaging.

Conclusion: We should observe 1)integrity of coil and 2)gap between coil and push wire marker carefully for detecting coil stretching. And also we should be fully aware of salvage techniques.

First voyage as a neurosurgery vascular surgeon

Jaewon Park

Department of Neurosurgery, Cheonan Chungmu Hospital

Objective: Independently as a neurosurgeon and vascular specialist, I started my first steps at Cheonan Chungmu Hospital. For the first time, I would like to report the trial and error and experiences I experienced in deciding and performing endovascular surgery independently under my own responsibility to my teachers and share it with my juniors.

Methods: I will present two coil cases for ruptured aneurysm and one onyx embolization case for ruptured AVM. Case 1. A 27-year-old female, a Korean in Kazakhstan, who entered the country as a Korean in selfquarantine, had mental deterioration after a sudden burst headache during self-quarantine. After brain CT, she was diagnosed with cerebral hemorrhage. She was in GCS E3V4M6 13 drowsy state and she did not speak Korean, so communication was difficult. In the initial CT performed, IVH of the 4th ventricle and both lateral ventricles and ICH of the corpus callosum were observed. An AVM with a diameter of 2.7 cm was observed at the splenium of left corpus callosum in CTA. She underwent onyx embolization for AVM 2 days after both EVD in relation to IVH. Afterwards, the patient was discharged without any seguelae other than short term memory impairment. Case 2. A 67-year-old woman with sudden burst headache was diagnosed with SAH and transferred to a local medical center after brain CT. After CTA, she had mental deterioration. As an emergency, she underwent catheter assisted coil embolization for Ruptured MCAB aneurysm, Lt., and ICH aspiration under XperCT guiding in a hybrid room. Her mental status was restored from GCS E1V2M4 7 Stupor to GCS E4V5M6 15 Alert. Case 3. A 39-year-old male Chinese illegal immigrant who endured a burst headache for 1 week and then visited the emergency room due to mental deterioration. SAH, inf frontal lobe ICH, and IVH were observed on initial CT, and AcoA large aneurysm and Rt. AVM of P-O was observed. He performed coil embolization for EVD and large AcoA An. and was discharged with mRS 0.

Result: The cases and routines repeated countless times as a fellow and clinical assistant professor helped me. Fortunately, I did not tremble or make a mistake while performing my first endovascular surgery myself.

Conclusion: I think it's time to prove the value of the hard times I've spent, and I will devote myself to it in the future.

The use of contralateral angioplasty to improve collateral flow in case of difficulty in initial EVT position

Yeon-Ju Choi

Department of Neurosurgery, Pohang Stroke and Spine Hospital

Objective: A 72-year-old female was admitted in a stuporous state with left hemiplegia on June 30, 2020. The patient had not only a history of hypertension and diabetes but also had experienced cerebral infarction in 2017. Initial National Institute of Health Stroke Scale (NIHSS) score was 6. TFCA and MRI revealed very severe stenosis of the right ICA ophthalmic segment and occlusion of the ipsilateral MCA M2 segment. Stroke MRI confirmed multi-focal HSI of both MCA territories on DWI. PWI revealed extended periods of delayed time to peak in both hemispheres.

Methods: Cerebral angioplasty was performed while the patient was under general anesthesia. At first, severe stenosis of the left CCA was resolved using a PRECISE 8*40(stent). Then, balloon angioplasty was done to treat severe stenosis of the right ICA ophthalmic segment with Ryurei PTA balloon 3*20. Immediate neurological assessment was performed, which showed slight improvement of mentality and motor functions compared with the patient's state at admission.

Result: In the case direct EVT is difficult for acute ischemic stroke, other ways can be utilized to improve collateral flow to the delayed perfusion area. If the second treatment option is easier than the first, the second treatment option can prove helpful for both the operating surgeon and the patient.

Conclusion: Contralateral angioplasty for improving collateral flow may help to improve the patient's state when contralateral angioplasty is easier than direct EVT.

Early-visit patients with poor clinical outcomes after successful recanalization with multiple retrieval attempts

Seung Hwan Kim

Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine

Objective: Rapid reperfusion has been considered the most powerful predictor of outcomes in patients with acute ischemic stroke. However, rapid reperfusion does not always make good clinical outcomes after endovascular thrombectomy. Here, we reported a case of early-visit patient with poor clinical outcomes after successful recanalization with multiple retrieval attempts.

Methods: A 66-year-old man visited our hospital with left hemiplegia within 30 minutes of symptom onset. The NIHSS score on admission was 16, and atrial fibrillation was checked by electrocardiogram. The right ICA was not observed on CT angiography, and MR perfusion imaging showed more than 50% mismatch between cerebral blood flow and cerebral blood volume in the right MCA territory.

Result: Intravenous thrombolysis was administered within 60 minutes of hospital arrival, and endovascular thrombectomy began within 90 minutes of hospital arrival. Due to the fragmentation and migration of the thrombus, endovascular thrombectomy using a combination technique of catheter aspiration and stent retriever was performed three times for the occlusion of the petrous segment, the communicating segment, and the ICA bifurcation. In addition, a stent retriever was performed for the occlusion of the M2 superior trunk. Successful recanalization was achieved with a total of four attempts within three hours of symptom onset. Post-procedural CT showed decreased density and edematous changes in the right MCA territory. Reocclusion was not observed on the brain MRA one day after the procedure. He developed deep drowsiness on two days after the procedure, and severe brain edema with midline shifting was observed on the brain CT. Decompressive hemicraniectomy was performed, and hemorrhagic transformation was observed on the postoperative CT. He survived with severe disabilities and needed constant nursing care (mRS 5).

Conclusion: In our case, successful recanalization with multiple retrieval attempts did not achieve good clinical outcomes in patient with early visit and rapid reperfusion. Our study suggests that it is important for young neurovascular surgeons to learn to make a successful recanalization as few attempts as possible to achieve better clinical outcomes.

FP3-8

Safety and efficacy of mechanical thrombectomy using balloon-expandable stent deployment as a rescue therapy after failed stent retriever thrombectomy — young gun in EVT (Case report)

Sang Young Kim

Department of Neurosurgery, Pohang Stroke and Spine Hospital

Objective: To show through our case study that balloon-expandable stent deployment is safe and effective in patients with immediate re-occlusion due to underlying atherosclerotic stenosis after unsuccessful intracranial stenting as a rescue therapy (a self-expandable stent: Solitaire AB stent).

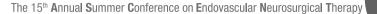
Methods: A 58-year-old man developed sudden right hemiparesis and dysarthria while he was sleeping. He had a baseline National Institutes of Health Stroke Scale (NIHSS) score of at least 11. Cerebral angiography was performed with conscious sedation, confirming an occlusion of the middle trunk (M1) of the left middle cerebral artery (MCA). Using stent-retriever technique, a Solitaire platinum stent thrombectomy device was deployed across the clot. Post-thrombectomy control angiography demonstrated non-revascularization of the left MCA. Consequently, intracranial stenting(a self-expandable stent : Solitaire AB stent) was performed as the second-line therapy. Post-intracranial stent deployment control angiography demonstrated non-revascularization of the left MCA. Finally, the patient was treated with balloon-expandable stent deployment (PRO-kinetic Energy stent). Immediate neurological assessment was performed, which showed motor improvement. An immediate post-intervention CT scan confirmed non-hemorrhage and contrast in the basal ganglia.

Result: The patient was treated with unsuccessful stent - retriever thrombectomy as first - line therapy, intracranial stenting (a self-expandable stent(SES) : Solitaire AB stent) as second-line therapy. Finally, he was treated with balloon-expandable stent(BES) deployment. BES deployment control angiography demonstrated partial incomplete revascularization (mTICI: 2B). Immediate neurological assessment was performed, which showed motor improvement. An immediate post-intervention CT scan confirmed non-hemorrhage and contrast in the basal ganglia. The patient was moved from ICU to general wards on five days after operation with an NIHSS score of 6. At one-month follow-up in general wards, his NIHSS was 3 and modified Rankin Scale score was 2. There was significant improvement in the patient's NIHSS (11 vs. 3), dysarthria (sever vs. mild) and right side weakness (Gr. 2/2 vs. 4+/4+).

Conclusion: Balloon-expandable stent deployment can be used as an efficient and safe rescue device after the failure of both stent - retriever thrombectomy as first - line therapy and intracranial stenting as a rescue therapy (a self-expandable stent : Solitaire AB stent) as second-line therapy in acute stroke with intracranial large artery vessel occlusion of the anterior circulation.

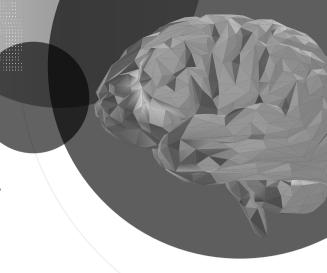
The 15th Annual Summer Conference on Endovascular Neurosurgical Therapy

ASCENT 2021


Theme: Exploring What is Next in Neuroendovascular Surgery

y

6/26(Sat.)


Introduction of new endovascular devices by company

좌장: 정준호(대한뇌혈관내치료의학회 보험이사)

ASCENT 2021

Theme: Exploring What is Next in Neuroendovascular Surgery

6/26(Sat.)

Symposium II : Bifurcation aneurysm from clipping/coiling to flow modulation

좌장: 신용삼(가톨릭대) / 권순찬(울산대)

1. Why clipping for bifurcation aneurysm

2. Why coiling for bifurcation aneurysm

3. Benefit of flow disruptor on bifurcation aneurysm

4. Update and review for flow disruptor on bifurcation aneurysm

하성곤(고려대)

박정현(한림대)

신용삼(가톨릭대)

Jacques Moret (NEURI center, Bicêtre University Hospital, France)

Why clipping for bifurcation aneurysm

하성곤

고려대학교 안산병원 신경외과

ASCENT 2021

Why Clipping for bifurcation Aneurysm

Department of Neurosurgery, Korea University Medical Center Ansan Hospital Sung-Kon Ha, M.D., Ph.D.

Clipping은 전투기 조종사와 같은 운명일까?

ASCENT 2021

그래도 Clipping이 유리한 경우

- IICP c hematoma mass effect
- **Easier** clipping than endovascular Tx
 - Pts vs Doctors vs Facilities

Clip vs Coil for MCA bif. An

- 환자 vs 의사 vs 설비
 - 불변 조건이면 조건에 맞추어 시행
 - 가변 조건 특히 의사 요인 Clip only, Coil only, Hybrid

Clipping for MCA bif. An 연자로서 고민

- · Coil only
 - 어쩌면 마음 편하게 Clipping에 맡기도록 할까?
- Hybrid
 - 어쩌면 Coiling 보다는 Clipping을 택하게 할까?
- 화지
 - Clipping의 장점을 어떻게 설명할 것인가?
- * 학문적 근거와 기술적 측면

Clip-first policy versus coil-first policy for the exclusion of middle cerebral artery aneurysms CLINICAL ARTICLE ANGUAGE 123 2000

- the results of two centers using opposing policies in the management of MCA aneurysms:
 - one clip-first policy, the other coil-first policy
 - limited the selection bias and ensured a good comparison of these two treatment modalities
- between January 2012 and December 2015
- retrospectively reviewed
- All MCA An (not bifurcation An only)

Variable	Coiling	Clipping	p Value
No. of aneurysms	48	42	
WFNS grade, no. (%)			
1	28 (58.3%)	18 (42.9%)	0.003
II .	1 (2.1%)	8 (19.0%)	
III	7 (14.6%)	0 (0%)	
IV	6 (12.5%)	6 (14.3%)	
V	6 (12.5%)	10 (23.8%)	
Clinical outcomes, no. (%)			
Additional surgery	21 (43.8%)	3 (7.1%)	8.89E-0
DCI	1 (2.1%)	3 (7.1%)	0.336
VP shunting	2 (4.2%)	5 (11.9%)	0.245
Death	6 (12.5%)	2 (4.8%)	0.276
6-mo mRS score	, ,	, ,	
0-3	36 (85.7%)	32 (80%)	0.565
4-5	6 (14.3%)	8 (20%)	
Return to previous state at 6 mos	12 (25%)	13 (31%)	0.639
Return to work at 6 mos			
Yes	8/38 (21.1%)	7/29 (24.1%)	0.776
NA	10	13	
Discomfort related to temporal muscle atrophy			
No	42 (100%)	36 (90%)	0.052
Moderate	0 (0%)	4 (10%)	
Severe	0 (0%)	0 (0%)	

Variable	Coiling	Clipping	p Value
No. of aneurysms	40	57	
Clinical outcomes, no. (%)			
Death	0 (0%)	2 (3.5%)	0.51
6-mo mRS score			
0–1	30 (78.9%)	51 (92.7%)	0.064
2-5	8 (21.1%)	4 (7.3%)	
Return to previous state at 6 mos	31/38 (81.6%)	48 (84.2%)	0.784
Return to work at 6 mos			
Yes	10/14 (71.4%)	22/26 (84.6%)	0.416
NA	24	31	
Discomfort related to temporal muscle atrophy			
No	38 (100%)	44 (80%)	0.002
Moderate	0 (0%)	11 (20%)	_
Severe	0 (0%)	0 (0%)	_

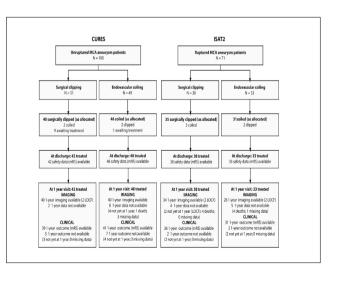
Variable	Coiling	Clipping	p Value
No. of aneurysms	88	99	
Missing pretreatment data, no.	2	2	
Aneurysm location, no. (%)			
M ₁	11 (12.5%)	14 (14.1%)	0.848
Bifurcation	71 (80.7%)	80 (80.8%)	
Distal (M ₂ , M ₃ , M ₄)	6 (6.8%)	5 (5.1%)	
Outcomes, no. (%)			
Posttreatment Raymond-Roy grade			
	27 (31)±	80 (84.2)§	7.94E-1
II .	32 (36.8)‡	8 (8.4)§	
III	28 (32.2)‡	7 (7.4)§	
Early aneurysm retreatment at 1 mo	2 (2.3)‡	1 (1.1)§	0.607
Raymond-Roy grade at 6-12 mos			
i	20 (27)¶	69 (86.3)**	9.57E-1
II	30 (40.5)¶	7 (8.8)**	
III	24 (32.4)¶	4 (5)**	
Late aneurysm retreatment at 24 mos	4 (4.5)	0 (0)	0.04

Conclusion

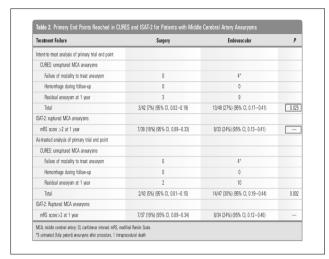
- Clipping and coiling for MCA aneurysm treatment provide the same clinical outcome for ruptured and unruptured aneurysms.
- clipping provides higher short- and long-term rates of complete exclusion, which in turn decreases the risk of aneurysm retreatment.

Surgical or Endovascular Management of Middle Cerebral Artery Aneurysms: A Randomized Comparison WORLD NEUROSURGERY #: 61-614, # 2021

- Analyzed results from patients with MCA aneurysms (randomized trials)
 - CURES (Collaborative UnRuptured Endovascular vs. Surgery)
 - ISAT-2 (International Subarachnoid Aneurysm Trial II)
- · The primary outcome (Treatment failure)
 - CURES
 - 1) failure to treat the aneurysm
 - intracranial hemorrhage during follow-up
 - 3) residual aneurysm at 1 year
 - ISAT-2
 - death or dependency (modified Rankin Scale score >2) at 1 year.
 - One-year angiographic outcomes
- CURES in September 2010 to July 2020 ISAT-2 in November 2012 to July 2020
- All MCA An (not bifurcation An only)


International subarachnoid aneurysm trial – ISAT Part II: Study protocol for a randomized controlled trial

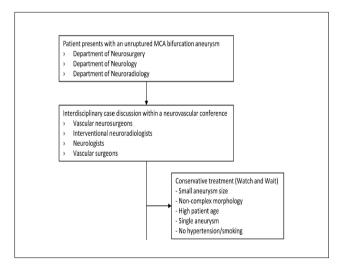
· Patients excluded from ISAT


- More than 9,559 aneurysms were screened, but only 2,143 patients were enrolled in the original ISAT study.
- The applicability of the study results to the type of patients that were screened but excluded remains in doubt.
- Subgroup analyses show that a variety of aneurysms and clinical situations were underrepresented in the original ISAT study
- MCA bifurcation aneurysms are readily accessible by surgery, while their anatomy may sometimes be less favorable for simple coiling, at least during the years that ISAT was conducted. MCA aneurysms were likely excluded because they were preferentially clipped.
- Due perhaps to perceived difficulties with surgical access, an insufficient number of posterior circulation aneurysm (only 2.7% of the total number) were included in ISAT.
- Posterior circulation aneurysms, and especially basilar bifurcation aneurysms, were likely preferentially coiled [31].
- As a result, a substantial number of clinicians remain unsure about the best management of MCA and of non-basilar, posterior circulation aneurysms.

International subarachnoid aneurysm trial – ISAT Part II: Study protocol for a randomized controlled trial

- Aneurysm location: middle cerebral artery bifurcation and posterior circulation
- Posterior circulation aneurysms have been associated with worse prognosis for both clipping and coiling [5]. For this reason, lesions in the different circulations will be minimized to ensure balanced groups, although we expect posterior circulation aneurysms will represent a minority of patients.
- Middle cerebral artery (MCA) aneurysms are common, but they
 were under-represented in ISAT. While they are increasingly
 treated with coiling, the best option remains unknown. We will
 monitor clinical results of treatments of MCA aneurysms
 separately, but this location will not be a minimization criterion.

ASCENT 2021

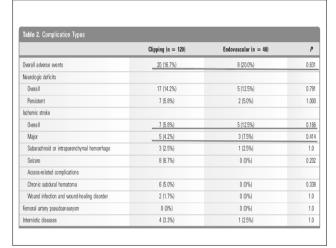

Table 3. Continued	CU	CURES		2
Angiographic Outcomes, 1 year, Intent-to-Treat	Surgical (n = 40)	Endovascular (n = 40)	Surgical (n = 34)	Endovascular (n = 28)
Complete occlusion	30 (75)	14 (35)	24 (71)	15 (54)
Residual neck	7 (18)	14 (35)	6 (18)	8 (29)
Residual aneurysm	3 (8)	9 + 3† (30)	4 (12)	5 (18)
Total	40	40	34	28
Angiographic Outcomes, 1 year, As-Treated	Surgical (n = 41)	Endovascular (n = 39)	Surgical (n = 34)	Endovascular (n = 28)
Complete occlusion	30 (73)	14 (36)	26 (76)	13 (46)
Residual neck	9 (22)	12 (31)	5 (15)	9 (32)
Residual aneurysm	2 (5)	10 + 3† (33)	3 (9)	6 (21)
Total	41	39	34	28
mRS. modified Rankin Scale.				

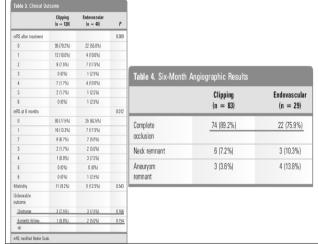
CONCLUSIONS: Randomized data from 2 trials show that better efficacy may be obtained with surgical management of patients with MCA aneurysms.

Microsurgical Clipping versus Advanced Endovascular Treatment of Unruptured Middle Cerebral Artery Bifurcation Aneurysms After a "Coil-First" Policy

WORLD NEUROSURGERY ■: E1-E9, ■ 2021

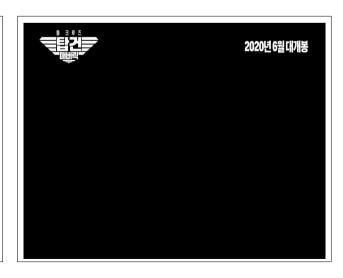
- Retrospective review
- The authors' institution
 - the University Hospital of Cologne
 - a tertiary care neurovascular center
 - UIA or RA 140/year cases (100 coil/40 clip)
 - coil-first policy (70%) treated by endovascular means)
- November 2010 and December 2019
- 148 patients with 160 unruptured MCA bifurcation An
- 120 (75%) clipping and 40 (25%) endovascularly.

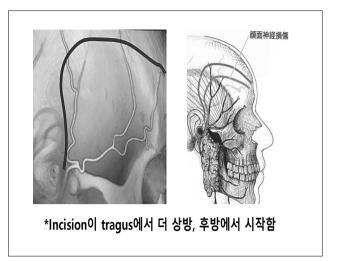


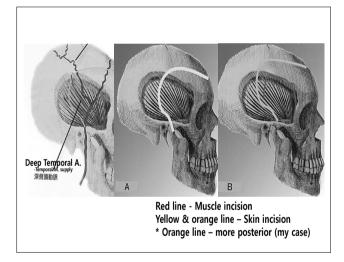

Symposium II: Bifurcation aneurysm from clipping/coiling to flow modulation

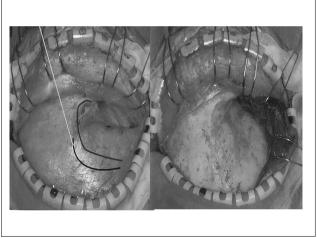
Results

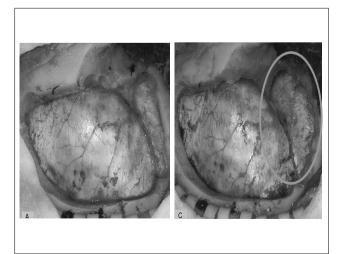
- Immediate technical success rates
 - clipping (100%) vs endovascular (92.5%, P = 0.015)
- In the endovascular group
 - Conventional coiling: 8 (20.0%)
 - SAC: 16 (40.0%), 2 staged procedures
 - BAC: 3 (7.5%)
 - WEB device: 13 (32.5%), 1 case additional Y stenting
 - 3 Treatment failures
 - 1 case rupture during BAC
 - 1 case coil & WEB embolization failure -> clipping
 - 1 case rupture during WEB detachment -> SAC c sacrificing parent A.

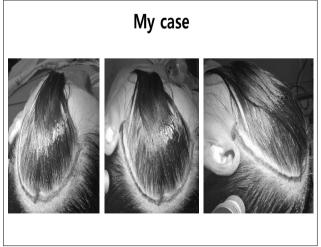

	Clipping (n = 120)	Endovascular (n = 40)	P
Patient age (years)	54.1 ± 10.8	59.3 ± 10.0	0.008
Female sex	90 (75.0%)	34 (85.0%)	0.392
mRS at baseline			< 0.001
0	105 (87.5%)	24 (60.0%)	
1	11 (9.2%)	6 (15.0%)	
2	3 (2.5%)	5 (12.5%)	
3	0 (0%)	1 (2.5%)	
4	1 (0.8%)	4 (10.0%)	
Aneurysm size (mm)	7.0 ± 3.6	6.6 ± 3.3	0.574
Neck width (mm)	4.0 ± 1.6	3.8 ± 1.3	0.452
Dome-to-neck ratio	1.7 ± 1.1	1.6 ± 0.4	0.766
Aspect ratio	1.7 ± 1.3	1.6 ± 0.6	0.598
Morphology			0.278
Regular	24 (20.0%)	13 (32.5%)	
Irregular	55 (45.8%)	19 (47.5%)	
Daughter sac	18 (15.0%)	2 (5.0%)	
Lobulated	23 (19.2%)	6 (15.0%)	

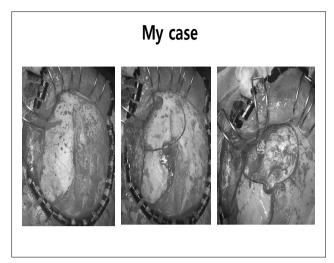

Conclusions

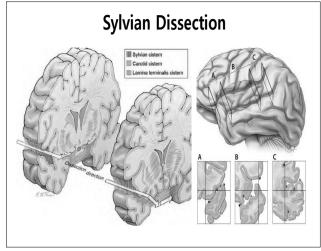

- Microsurgical clipping compared to endovascular Tx
 - higher technical success rate
 - slightly higher complete occlusion
 - no additional morbidity
 - similar clinical outcome
- Microsurgical clipping may still be the gold standard treatment option for unruptured MCA bifurcation aneurysms, even though developments in endovascular treatment may change this in the future.

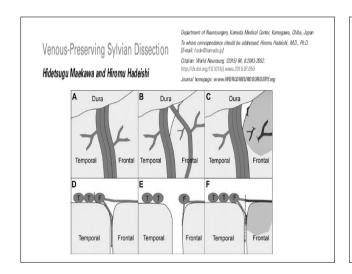


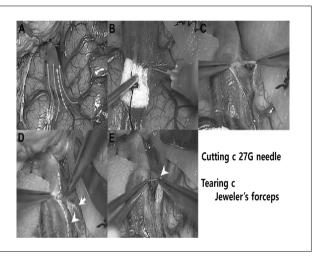

ASCENT 2021



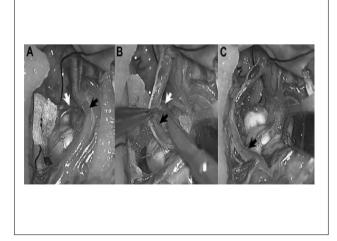




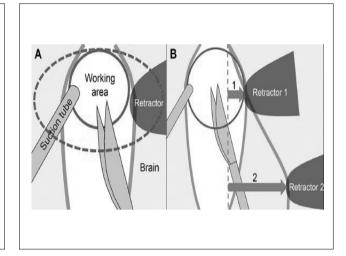


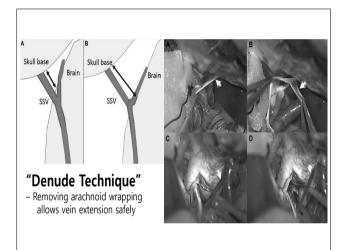


Symposium II: Bifurcation aneurysm from clipping/coiling to flow modulation





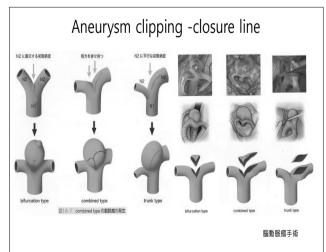

ASCENT 2021



"Paper knife Technique" (=letter opener)

After entering of deep SF,
- Deep to superficial,
Distal to proximal dissection

Retractor tip & Suction tube - close to working area



Sylvian dissection

- Aneurysmal SAH, blunt D. may be safer and faster
 d/t blood clot
- Sharp D. more easily & safely handle bridging Vein
- Focused blunt D. is faster than sharp D.
- Focused opening blunt D. c bipolar
- Wide opening Sharp D. c microscissors

Symposium II: Bifurcation aneurysm from clipping/coiling to flow modulation

ASCENT 2021

Why coiling for bifurcation aneurysm

박정현

한림대학교 동탄성심병원 신경외과

Advances in the endovascular treatment of intracranial aneurysms since the advent of detachable coil embolization continue to expand the spectrum of lesions amenable to minimally invasive therapy. The feasibility of treating a given cerebral aneurysm by a given open or endovascular modality does not necessarily make such an approach the optimal choice. Rather, any given cerebral aneurysm and patient should be carefully analyzed on a multitude of parameters which are based on available adjunctive technology, aneurysm morphology and characteristics, endovascular vs. microsurgical accessibility, and long-term angiographic outcome. In addition to patient age, co-morbid conditions, lesion size and attendant risk, one must also consider patient preference with respect to length of hospital stay, recovery duration and required follow-up and radiographic assessments. The relentless improvements in minimally invasive embolization therapies ranging from coiling with adjunctive balloon and stent support to the emerging role of flow-diversion must be balanced against the lower cost and complexity associated with longitudinal clinical and radiographic follow-up requirements of microsurgical clipping. In this rapidly evolving field, the quest for maximizing protection from aneurysm rupture at the lowest neurological cost dictates that a balance be maintained between technical virtuosity and procedural safety of either microsurgical clipping or endovascular repair to ensure that the advantages of the selected modality not be negated by its associated shortcomings.

Benefit of flow disruptor on bifurcation aneurysm

신 용 삼

가톨릭대학교 서울성모병원 신경외과

-
·····

Update and review for flow disruptor on bifurcation aneurysm

Jacques Moret

NEURI center, Bicêtre University Hospital, France

The 15th Annual Summer Conference on Endovascular Neurosurgical Therapy

ASCENT 2021

Theme: Exploring What is Next in Neuroendovascular Surgery

Poster Session

P-02 Initial experiences of flow redirection endoluminal device (FRED) for complex cerebral aneurysms P-03 Clinical and angiographic outcomes of thrombectomy with novel stent-type clot-retrieval Embotrap II device in acute major arterial occlusion P-04 Hemodynamic instability induced by carotid artery stenting; A single-center retrospective study P-05 Possibility of variant form of artery of 'Davidoff and Schechter' (ADS)	P-01	Preoperative proton density MRI-based intradural versus extradural localization of paraclinoid aneurysms	이아름, 김범태 (순천향대학교 부천병원)
P-03 (linical and angiographic outcomes of thrombectomy with novel stent-type clot-retrieval Embotrap II device in acute major arterial occlusion P-04 Hemodynamic instability induced by carotid artery stenting; A single-center retrospective study P-05 Possibility of variant form of artery of 'Davidoff and Schechter' (ADS) P-06 A left vertebral artery originating from an left internal carotid artery discovered incidentally during treatment for a cerebral aneurysm: A case report P-07 Clinical characteristics and neuroimaging findings of isolated anterior cerebral artery territory infarction: A report of 8 cases P-08 Deep seated Moyamoya-related intracranial aneurysm which was indirectly treated by reducing the hemodynamic burden on the parent artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report P-10 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage P-14 Severe carotid bulb stenosis should be ruled out in spontaneous P-15 Pseudoaneurysm formation caused by stenting for intracranial 2	P-02	Initial experiences of flow redirection endoluminal device (FRED) for	강범모
RP-04 Hemodynamic instability induced by carotid artery stenting; A single-center retrospective study 수 P-05 Possibility of variant form of artery of 'Davidoff and Schechter' (ADS) 수 A left vertebral artery originating from an left internal carotid artery discovered incidentally during treatment for a cerebral aneurysm: A case report P-07 Clinical characteristics and neuroimaging findings of isolated anterior cerebral artery territory infarction: A report of 8 cases (분당제생병원) (분당제생병원) P-08 Deep seated Moyamoya-related intracranial aneurysm which was indirectly treated by reducing the hemodynamic burden on the parent artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch (이화여자대학교 목동병원) P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis 방창환 (서울대학교병원) P-12 P-12 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (부산부민병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial	P-03	,	
P-05 Possibility of variant form of artery of 'Davidoff and Schechter' (ADS) 심환석 (강동경희대학교병원) P-06 A left vertebral artery originating from an left internal carotid artery discovered incidentally during treatment for a cerebral aneurysm: A case report P-07 Clinical characteristics and neuroimaging findings of isolated anterior cerebral artery territory infarction: A report of 8 cases P-08 Deep seated Moyamoya-related intracranial aneurysm which was indirectly treated by reducing the hemodynamic burden on the parent artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch (이화여자대학교 목동병원) P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report (가톨릭대학교 인천성모병원) P-11 Large thrombus formation during coil embolization	. 05	stent-type clot-retrieval Embotrap II device in acute major arterial	_ _ _
P-06 A left vertebral artery originating from an left internal carotid artery discovered incidentally during treatment for a cerebral aneurysm: A case report P-07 Clinical characteristics and neuroimaging findings of isolated anterior cerebral artery territory infarction: A report of 8 cases P-08 Deep seated Moyamoya-related intracranial aneurysm which was indirectly treated by reducing the hemodynamic burden on the parent artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report P-11 Large thrombus formation during coil embolization P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage P-15 Pseudoaneurysm formation caused by stenting for intracranial	P-04		
P-06 A left vertebral artery originating from an left internal carotid artery discovered incidentally during treatment for a cerebral aneurysm: A case report P-07 Clinical characteristics and neuroimaging findings of isolated anterior cerebral artery territory infarction: A report of 8 cases P-08 Deep seated Moyamoya-related intracranial aneurysm which was indirectly treated by reducing the hemodynamic burden on the parent artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report P-11 Large thrombus formation during coil embolization P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis	P-05	Possibility of variant form of artery of 'Davidoff and Schechter' (ADS)	
P-07 Clinical characteristics and neuroimaging findings of isolated anterior cerebral artery territory infarction: A report of 8 cases (분당제생병원) P-08 Deep seated Moyamoya-related intracranial aneurysm which was indirectly treated by reducing the hemodynamic burden on the parent artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch (이화여자대학교 목동병원) P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report P-11 Large thrombus formation during coil embolization (가톨릭대학교 인천성모병원) P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis (서울대학교병원) P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (예리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수	P-06		오형석
P-08 Deep seated Moyamoya-related intracranial aneurysm which was indirectly treated by reducing the hemodynamic burden on the parent artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch (이화여자대학교 목동병원) P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report P-11 Large thrombus formation during coil embolization (가톨릭대학교 인천성모병원) P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis 방창환 (서울대학교병원) P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (메리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous (마리놀병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수		, ,	(부평세림병원)
P-08 Deep seated Moyamoya-related intracranial aneurysm which was indirectly treated by reducing the hemodynamic burden on the parent artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report (기호종 기호종 기호종 기호종 기호종 기호종 기호종 기호종 기호종 기호종	P-07		
indirectly treated by reducing the hemodynamic burden on the parent artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report P-11 Large thrombus formation during coil embolization P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage P-15 Pseudoaneurysm formation caused by stenting for intracranial (분당서울대학교병원) P-16 (이화여자대학교 목동병원) (가톨릭대학교 인천성모병원) (가톨릭대학교 인천성모병원) (서울대학교병원) 전순영 (메리놀병원) 부현욱 (부산부민병원)		, ,	
artery: A case report P-09 A case of anomaly with the left vertebral artery originated from aortic arch (이화여자대학교 목동병원) P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report (가톨릭대학교 인천성모병원) P-11 Large thrombus formation during coil embolization 기희종 (가톨릭대학교 대전성모병원) P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis 방창환 (서울대학교병원) P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (메리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수	P-08		
P-10 Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report (가톨릭대학교 인천성모병원) P-11 Large thrombus formation during coil embolization 기회종 (가톨릭대학교 대전성모병원) P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis 방창환 (서울대학교병원) P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (메리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial		artery: A case report	(분당서울대학교병원)
Communicating aneurysm involving a subcallosal artery: A case report Large thrombus formation during coil embolization 기희종 (가톨릭대학교 대전성모병원) P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis 방창환 (서울대학교병원) P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (메리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수	P-09	, , ,	
P-11 Large thrombus formation during coil embolization 기희종 (가톨릭대학교 대전성모병원) P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis 방창환 (서울대학교병원) P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (메리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수	P-10		
P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis 방창환 (서울대학교병원) P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage 에러놀병원 P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial			
P-12 Hemorrhage after balloon angioplasty for proximal ICA severe stenosis 방창환 (서울대학교병원) P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (메리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous 악현욱 convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수	P-11	Large thrombus formation during coil embolization	
P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (메리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수			
P-13 A case of secondary Parkinsonism Induced by hydrocephalus after aneurysmal subarachnoid hemorrhage (메리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수	P-12	Hemorrhage after balloon angioplasty for proximal ICA severe stenosis	
aneurysmal subarachnoid hemorrhage (메리놀병원) P-14 Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수	D 12	A case of secondary Parkinsonism Indused by budge capitalus after	
P-14Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage박현욱 (부산부민병원)P-15Pseudoaneurysm formation caused by stenting for intracranial김영수	P-13		
convexity subarachnoid hemorrhage (부산부민병원) P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수	P-14	, and the second se	
P-15 Pseudoaneurysm formation caused by stenting for intracranial 김영수	1 1-7		
	P-15	,	

Preoperative proton density MRI-based intradural versus extradural localization of paraclinoid aneurysms

이아름¹, 이호준², 신동성², 김범태²

순천향대학교 부천병원 영상의학과¹, 신경외과²

Objective: Exact preoperative confirmation of the distal dural ring and intradural location of a paraclinoid aneurysms has been an age old dilemma.

Methods: The equipment and techniques associated with magnetic resonance imaging (MRI) have rapidly evolved. High-resolution MRI (HRMRI) can yield excellent visualization of both the arterial wall and lumen, thus facilitating the exact localization of unruptured paraclinoid aneurysms.

Result: In the present study, we describe the usefulness of proton density magnetic resonance (PD MR) imaging for localization of unruptured paraclinoid aneurysms which was planned and whether we do endovascular approaches in our cases.

Conclusion: Proton density MRI showed sufficient contrast difference to distinguish intradural location from surrounding dural structures.

Initial experiences of flow redirection endoluminal device (FRED) for complex cerebral aneurysms

Bum-Mo Kang, Sung-Ho Lee, Jae-Sang Oh, Seok-Mann Yoon

Department of Neurosurgery, Soonchunhyang university Cheonan Hospital

Objective: Coil embolization for large to giant aneurysms and fusiform aneurysms is challenging. Flow diverter is an alternative treatment modality for these aneurysms. The authors report initial experiences of FRED for complex aneurysm treatment.

Methods: Six FRED were successfully deployed in 5 patients.

Result: Three ICA large to giant aneurysms and three vertebrobasilar fusiform aneurysms were treated with FRED without difficulty. One intraprocedural thrombus was identified and resolved with intraarterial Tirofiban infusion. Postoperatively all patient was neurologically normal except one case of thalamic infarction, who was treated with FRED Jr for PCA fusiform aneurysm. Complete or near-complete occlusion of all aneurysms was achieved during follow-up.

Conclusion: Flow diverter implantation is a safe and effective treatment modality for complex cerebral aneurysms.

Clinical and angiographic outcomes of thrombectomy with novel stent-type clot-retrieval Embotrap II device in acute major arterial occlusion

<u>Chang-Hyun Kim</u>¹, Seung-Bin Woo¹, Jae-Hyun Kim¹, Sung-Il Sohn², Jeong-Ho Hong², Hyung-Jong Park², and Chang-Young Lee¹

¹Department of Neurosurgery and ²Neurology, Keimyung University, Dong-San Medical Center

Objective: The aim of this study is to investigate angiographic, clinical results, and first pass recanalization (FPR) effect on clinical outcomes of mechanical thrombectomy (MT) with novel stent-type clot-retrieval Embotrap II device in acute stroke.

Methods: All 28 consecutive patients with acute major arterial occlusion underwent MT with first-use Embotrap II stent-retriever in our institute. Successful recanalization (SR) was defined as modified TICI grade 2b or 3. Clinical outcome was determined using modified Rankin Scale (mRS) score at discharge or 3 months (good: 0-2, poor: 3-6). Clinical and angiographic data were collected. Also, we classified into two groups: first-pass recanalization (FPR) and non-FPR group. We analyzed the effect on clinical outcome of FPR using the statistical analysis.

Result: Mean age and initial NIHSS score was 73.5±11.3 years and 13.5±5.8, respectively. The location of occluded vessel was as follows; 20 MCA (17 M1 and 3 M2 segment) and 8 ICA (5 distal ICA and 3 proximal ICA), respectively. Overall SR was achieved in all 28 (100%) patients. The SR of MT with first-use Embotrap II was performed in 20 (71.4%) in 28 patients. Also, the first-pass recanalization (FPR) was achieved in 18 (64.3%) patients. Additional intra-arterial tirofiban and rescue stenting was achieved in 4 (14.3%) and 3 (10.7%) patients, respectively. Mean time of puncture to final recanalization was 45.6±30.2 (range 16-120) min. Good mRS score at discharge or 3-month was 16 of 28 patients (57.1%). Fortunately, no procedure-related complication occurred in any patients. Symptomatic hemorrhage developed in 3 (10.7%) patients. Overall mortality was one (3.6%) patient with symptomatic hemorrhage. Also, the FPR groups (66.7%) had a higher tendency of good outcome (mRS score 0-2) than the non-FPR groups (40.0%).

Conclusion: We suggest that mechanical thrombectomy with novel stent-type clot-retrieval Embotrap II is safe and effective treatment method in acute major arterial occlusion.

Hemodynamic instability induced by carotid artery stenting: A single-center retrospective study

MuHa Lee, Sukh Que Park, Hye Ran Park, Hyung-Ki Park, Jae-Chil Chang, Sung-Jin Cho

Department of Neurosurgery, Soonchunhyang University Seoul Hospital

Objective: AObjective: Post-treatment hypotension and bradycardia are important complications of carotid artery stenting (CAS) and these are called hemodynamic instability (HI). The incidence and impact of HI on patients' short-term outcomes have been widely discussed and have been of large debate in the literature. Also, the duration of HI is not yet well known. Attempts are being made to identify the expected risk factors for HI occurrence and duration. We investigate the assessment of patient HI incidence, duration, possible predictors and factors affecting HI.

Methods: This study was performed with a retrospective design in a single institution. A total of 89 patients with carotid artery stenosis received carotid artery stenting between 2012 and 2020. HI is defined as systolic blood pressure lower than 90mmHg or a heart rate lower than 50. And continuous EKG monitoring and BP monitoring were conducted before and after the procedure and continued until recovery.

Result: The mean age of the patients was 72.43 \pm 8.53 years old (range 49 to 87). Of 89 patients, 25 patients (28%) developed HI after CAS. The median duration of HI was 11.33 \pm 44.57 hours (range 0.08 to 224). The difference in the diameter before and after the procedure (3.29 \pm 12.43 mm)(p-value 0.026), the presence of symptoms (p-value 0.027) and the presence of coronary artery disease (p-value 0.047) were found to have a significant relationship with incidence of HI. Other factors (sex, plaque ulceration, plaque calcification, distance from bifurcation to maximum stenotic lesion) were not significantly related to incidence of HI. Most patients with HI were recovered within 3 hours, but some of them (20%) lasted more than 3 hours. All of the factors were not significantly related to HI lasting more than 3 hours. However, the closer the distance from the carotid bifurcation to stenotic lesion and the greater the diameter before and after the procedure, the more likely the HI lasted for more than 3 hours.

Conclusion: Hemodynamic instability is a common complication that occurs after carotid artery stenting. And most of them resolved in a few hours. The difference in the diameter before and after the procedure, the presence of symptoms and the presence of coronary artery disease can be used to predict HI after CAS.

Possibility of variant form of Artery of 'Davidoff and Schechter' (ADS)

Hwanseok Shim

Department of Neurosurgery, Kyung Hee University Hospital at Gangdong

Objective: The Artery of Davidoff and Schechter (ADS) is a dural branch of the posterior cerebral artery that can supply the meninges close to the falcotentorial junction. It is usually not identified on angiography except when enlarged in the setting of a dural AVF or meningioma. Our recent case of dural arteriovenous fistula occurred in the posterior fossa was caused by artery of Davidoff and Schechter and ipsilateral Occipital artery. And we treated the dAVFs by Onxy embolization of those arteries successfully. But its running route of the artery of Davidoff and Schechter was some what different from previously printed articles. So we want to introduce this well known but uncommon case of dAVF from ADS to ASCENT 2021, as a possibility of variant form of artery of Davidoff and Schechter.

Methods: Review of literature and compare with our case of angiographic findings.

Result: Our institutional case of ADS which made dural AVF was started from inferior direction of PCA P1-2 junction, and palisade lateral to ipsilateral SCA, P4 calcarine artery and parieto-occipital artery. And finally into falco-tentorial junction. Before reach the faco-tentorial junction, this vessel made dural AVF. This finding is somewhat different from previously known route of ADS.

Conclusion: The artery of our case which made dural AVF in posterior fossa may indicates possibility of variant form of ADS.

A left vertebral artery originating from an internal carotid artery discovered incidentally during treatment for a cerebral aneurysm: A case report

Hyungsug Oh, Hyosang Lee, Munsul Yang

Department of neurosurgery, Serim General Hospital

Objectives: To report the left vertebral artery originating from an internal carotid artery discovered incidentally during treatment for a cerebral aneurysm.

Summary of background data: Anomalous origin of vertebral arteries is a rare vascular anomaly and mostly discovered as incidental findings during computed tomography angiogram, magnetic resonance angiography or digital subtracted angiogram of the aortic arch and cerebral vessels.

Case presentation: A 54-year-old male patient visited the neurologist with symptoms of headache and head tremors. In the neurology department, brain MRI and MRA were taken. A cerebral aneurysm of the anterior communicating artery was found on MRA, and neurosurgery was recommended. A preoperative head and neck CT angiography was performed, and as a result of the examination, a vertebral artery originating from the left internal carotid artery was found along with a 4 mm cerebral aneurysm of the anterior communicating artery. The vertebral arteries originating from both subclavian arteries were in severe hypoplasia. The coil embolization was successfully performed for cerebral aneurysm of the anterior communicating artery, and the anomaly of the vertebral artery was confirmed in detail during intervention.

Discussion: Anomalous origin of left VA is more frequently involved than the right. Origin of left VA directly from aortic arch (about 3-8% of cases), represents the commonest variation in the origins of VAs and second commonest aortic arch anomaly. However, anomalous origin of VA directly from carotid arteries is very rare. VA originating from common carotid artery and from ECA have been reported in the literature. Trifurcation of common carotid artery is well known and trifurcation with occipital artery and facial artery have been reported. However, anomalous origin of VA directly from internal carotid artery is very rare. Normally, both VAs arise from subclavian artery, except for C7 transverse foramen, they pass through C6 to C1 transverse foramina and enter foramen magnum with its intracranial course. Importantly, in our case, abnormal course of left VA occurred after originating from internal carotid artery.

Conclusions: The anomalous origin of the left vertebral artery from the left internal carotid artery is rare. Vertebral artery anomalies are usually incidentally discovered during angiographic imaging of the head and neck, however, it is importance for preoperative planning of neuro-endovascular intervention to avoid inadvertent arterial injury.

Clinical characteristics and neuroimaging findings of isolated anterior cerebral artery territory infarction: A report of 8 cases

Mi Kyung Kim, Hyun Gon Kim, Gyo Jun Hwang

Department of Neurosurgery, Bundang Jesaeng Hospital

Objective: Isolated brain infarction in the anterior cerebral artery (ACA) territory is rare, and its etiology has not yet been fully elucidated. This study aimed to investigate the clinical and radiologic characteristics of patients with isolated ACA territory infarction.

Methods: We retrospectively reviewed 119 consecutive patients diagnosed and treated with acute cerebral infarction confirmed by diffusion-weighted MRI and digital subtraction angiography (DSA) between January 2019 and December 2020 in our institute. Of these patients, 8 patients (6.7%, 6 men, 45-84 years old) suffered isolated ACA territory infarction. We categorized the infarction pattern into three groups: scattered, territorial and scattered-territorial.

Result: Five (62.5%) patients were overweight and the mean body mass index was 26.1 (23.1–29.8) kg/m2. The initial morphology of vascular lesions identified by magnetic resonance angiography (MRA) or computed tomography angiography (CTA) showed the following distribution: occlusion of the ACA (n=4, 50.0%), luminal irregularity/stenosis (n=2, 25.0%), and no steno-occlusion (n=2, 25.0%). One patient with occlusion, 2 patients with luminal irregularity/stenosis, and 1 patient with no steno-occlusion in MRA or CTA were confirmed arterial dissections by DSA. The stroke subtypes of the 8 patients with isolated ACA territory infarction were arterial dissection, atherothrombotic infarction, and cardioembolic infarction in 4 patients (50.0%), 3 patients (37.5%), and 1 patient (1.3%), respectively. Of 4 patients with arterial dissection, 2 underwent endovascular treatment. The scattered-territorial infarction pattern was observed in 2 (50%) patients with arterial dissection and 3 (100%) patients with atherothrombotic infarction. The vascular lesion was most commonly located on the A2 segment of the ACA in 4 (50.0%) patients and the right side in 5 (62.5%) patients. The National Institutes of Health Stroke Scale upon admission and favorable clinical outcome (modified Rankin Scale score, 0-2) at discharge had no relation with stroke subtype or the infarction pattern.

Conclusion: Arterial dissection was common vascular lesion underlying an isolated ACA territory infarction. Therefore, a thorough assessment of isolated ACA territory infarction and proper treatment strategies might be considered according to stroke subtypes.

P-08

Deep seated moyamoya-related intracranial aneurysm which was indirectly treated by reducing the hemodynamic burden on the parent artery: A case report

Gi Yeop Lee, Jang Hun Kim, Seung-Pil Ban, Byung-gyu Cho

Department of Neurosurgery, Seoul National University Bundang Hospital

Objective: The prevalence of aneurysm formation in cases of adult Moyamoya disease (MMD) is approximately 14% and represents a major potential hemorrhagic risk. Here, we introduce a patient who showed MMD-related aneurysm on the left anterior choroidal artery (AChA) and was treated by the decrease the hemodynamic burden on his AChA after indirect bypass surgery.

Methods: A 22-year-old male soldier was transferred to the emergency room of Armed Forces Capital Hospital after showing sudden headache and few minutes of loss of consciousness. On arrival, he was alert and presented with no neurologic deficits. Initial brain computed tomography (CT) revealed a small amount of subarachnoid hemorrhage on the left quadrigeminal cistern. In his left internal carotid angiogram, 2.42 mm-sized saccular aneurysm was identified on his plexal segment of left AChA. Initially, the MMD-related aneurysm was observed because the embolization of plexal segment of AChA might have higher risk of complications comparing to the chance for rupture. Indirect bypass surgery of encephalo-duro-arterio-synangiosis (EDAS) was performed three weeks later from the first onset.

Result: Postoperatively, his clinical course got worsened and the serial CT revealed the delayed postoperative hematoma on the epidural and subdural spaces occurred. The left hemisphere was shrunken; therefore, 2~3 L of normal saline & 0.5~1 L of starch a day were hydrated for his brain expansion. In the left common carotid angiogram, the known aneurysm was enlarged that the maximal diameter was 5.33 mm. Aneurysm was again observed because of several reasons: (1) If coil embolization of aneurysm failed, trapping of the plexal segment of AChA was inevitable and it might lead to the progressive infarctions. (2) Since the redundant collateral flows were originated from the proximal and distal AChA, procedures may confer the decrease of deep cerebral perfusions. Fortunately, after three weeks from EDAS surgery, the patient was restored, and his weakness got improved. Hydration was gradually ceased, and the following angiogram (1 month after EDAS) revealed a dramatic size reduction of the aneurysm.

Conclusion: The treatment of MMD-related aneurysm can be challenging and should be tailored according to the hemodynamic status of the patient. When the aneurysm is deeply seated be treated and is highly suspected as accompanying the complications, surgical bypass for decreasing hemodynamic burden of the parent artery can be a good optional treatment.

A case of anomaly with the left vertebral artery originated from aortic arch

Sung-Kyun Hwang

Department of Neurosurgery, Ewha Womans University of College of Medicine, Mokdong Hospital

Objective: We report a case of an anomalous origin of the left vertebral artery originated from a ortic arch presented by non-aneurysmal spontaneous subarachnoid hemorrhage (SAH).

Methods: A 33-year-old man presented with sudden severe headache and followed by sensory change in right hand. At the time of admission, brain computed tomography angiography revealed small amount of acute SAH in the left introitus of the left sylvian cistern. Cerebral angiography showed no definite intracranial vascular lesion (aneurysm) but, anomalous origin of the left vertebral artery originated from aortic arch in aortography.

Result: The patient was treated by medication and followed by one week using computed tomography subtraction angiography. He made a steady recovery without neurological sequela including sensory change in right hand.

Conclusion: Further investigations are needed to reveal risk factors, vascular anatomy, and causative mechanisms of this cerebral vascular anomaly.

Y-stent-assisted-coil embolization of a wide-necked anterior communicating aneurysm involving a subcallosal artery: A case report

Minhyeong Moon, Dong-Kyu Jang, Byung-Rae Cho

Department of Neurosurgery, Incheon St. Mary's Hospital and College of Medicine, The Catholic University of Korea

Objective: A wide-necked anterior communicating aneurysm (AComAn) involving a subcallosal artery around aneurysm neck is rare and very challenging to treat because of potential basal forebrain infarction and cognitive dysfunction. Here, we report this complex aneurysm treated successfully with Y-stent-assisted coil embolization.

Methods: A 61-year-old woman was diagnosed with multiple unruptured aneurysms including AComAn (7.7x7.07x5.67mm (DNH)), left A1 aneurysm (1.93x.2.82x2.09mm (DNH)), and Lt anterior choroidal aneurysm (1.99x1.59x2.15mm (DNH)), and bilateral MCA occlusion with basal moyamoya-like vessels without transdural anastomosis. AComAn was initially planned to treat because of potential higher rupture risk due to size and bleb

Result: Bifemoral access was adopted and main guiding catheter was positioned up to left petrous ICA and diagnostic catheter was positioned into right ICA. Initially, the first microcatheter was inserted into AComAn. The second microcatheter was positioned up to left A2 and Neuroform atlas 4x21mm was deployed from left A2 to A1 during coil mass protection of herniation of stent into aneurysm sac. Subsequently the second microcatheter was reloaded into deployed stent and passed through the stent struts up to subcallosal artery. Neuroform atlas 3x21mm was deployed from subcallosal artery to left A1 with the configuration of Y. The second microcatheter was retrieved and coil embolization through the first microcatheter was conducted. Raymond class I with packing density of 40.9% measured with AngioCalc tool was achieved. The patient was discharged without any complications.

Conclusion: Y-stent-assisted coil embolization may be a feasible treatment option for a complex anterior communicating aneurysm involving a subcallosal artery.

Large thrombus formation during coil embolization

Heejong Ki

Department of Neurosurgery, Daejeon St Mary's Hospital, The Catholic University of Korea

Objective: This was not only my first endovascular treatment case but also the complication case which the large thrombus was formed in the distal internal carotid artery (ICA) during stent assisted coil embolization (SAC).

Methods: A 64-year old woman visited the emergency room complaining of headache and fever. Initial computed tomography angiography (CTA) showed diffuse subarachnoid hemorrhage with a saccular aneurysm involving anterior communicating artery (AcomA). SAC was decided after performing diagnostic angiography. A large thrombus located in the left distal ICA was detected during deployment of coils. Consecutively, mechanical thrombectomy was performed for the large thrombus migrated into the left MCA.

Result: SAC was performed for the ruptured aneurysm involving AcomA with 9 coils. Mechanical thrombectomy was performed with modified treatment in cerebral ischemia (mTICI) 3 score.

Conclusion: The lesson from this case was the importance of flushing the system continuously and checking all the angiography carefully.

Hemorrhage after balloon angioplasty for proximal ICA severe stenosis

방창환^{1,2}, 유동현¹, 김강민¹, 조영대¹, 강현승¹

서울대학교병원 신경외과¹, 분당서울대학교병원 신경외과²

Objective: Carotid artery stenting (CAS) is good treatment option for symptomatic hemodynamically unstable proximal ICA severe stenosis. But it has potential serious complication such as cerebral hyperperfusion syndrome (CHS). Staged carotid artery may be considered to prevent serious complication of CHS. Here we present ICH after staged CAS.

Methods: A 74-year-old male patient complained of decreased visual acuity in both eyes, especially in the right eye for 2 years, even after multiple attempts to ophthalmologic treatment. MRA was performed on suspicious of ocular ischemic syndrome and right proximal ICA steno-occlusion was suspected. On TFCA, severe stenosis of right proximal ICA was confirmed, and both basal perfusion and vascular reserve capacity on right MCA territory were decreased on perfusion MRI. For symptomatic hemodynamically unstable right proximal ICA severe stenosis, we planned staged CAS. First, balloon angioplasty using SLEEK 3*40 at a pressure of 12 atm was done. (Nominal pressure 8 atm, bursting pressure 16 atm). Preoperative SBP range was 120 to 165 and postoperative SBP range was 100 to 145.

Result: He discharged one day after balloon angioplasty, and readmitted for carotid artery stenting one week later. Perfusion MRI performed before CAS showed improvement in perfusion, but basal ganglia ICH was confirmed. It was revealed that the patient arbitrarily took dual antiplatelet agents at double the dose. He had no symptoms, and after stopping the antiplatelet and controlling the BP in normotensive range, the hemorrhage was stable and he was discharged without performing CAS. Since there was no recoil on the CTA performed one months later, and there was no worsening of symptoms, the patient was observed on at outpatient basis.

Conclusion: This case is the first of ICH since staged CAS was performed at our institution for a patient with symptomatic, hemodynamically unstable severe ICA stenosis. However, unlike other patients, there was breach of our treatment protocol regarding the dose of dual antiplatelet agents. Since cerebral hyperperfusion syndrome is possible serious complication, even if staged CAS is performed, the patient should be managed with attention to medications and strict blood pressure control.

A case of secondary Parkinsonism induced by hydrocephalus after aneurysmal subarachnoid hemorrhage

Soon Young Kwon

Department of Neurosurgery, Maryknoll Medical Center

Objective: Secondary parkinsonism by hydrocephalus after aneurysmal rupture is a rare complication. Hydrocephalus can induce secondary parkinsonism caused by increased ventricular pressure near the upper midbrain and basal ganglia. These mechanisms are thought to cause mechanical disruption of the dopaminergic system. Dopamine replacement is essential in secondary parkinsonism.

Methods: We report a case of secondary Parkinsonism due to hydrocephalus after aneurysmal subarachnoid hemorrhage.

Result: A 50-year-old woman presented with subarachnoid hemorrhage with PICA aneurysmal rupture. Coil embolization and extraventricular drainage(EVD) were performed, and the patient's consciousness improved on the 1st day after surgery. The patient was tolerable with the EVD clamping test and removed 7 days after surgery. After removal of the EVD catheter, the patient's consciousness gradually deteriorated and the ventricle size slightly increased in the brain computed tomography. She underwent a ventriculoperitoneal(VP) shunt operation, and the patient's consciousness improved slightly. However, new symptoms of sialorrhea, bradykinesia, dysphagia and rigidity were developed. Suspected of secondary Parkinsonism, levodopa/carbidopa was administered and the patient showed significant improvement in above symptoms.

Conclusion: Secondary parkinsonism can rarely be caused by hydrocephalus after aneurysmal subarachnoid hemorrhage. Dopaminergic agents should be considered if symptoms do not improve after VP shunt, or if symptoms such as rigidity, bradykinesia, or tremor are present.

Severe carotid bulb stenosis should be ruled out in spontaneous convexity subarachnoid hemorrhage

Hyun Wook Park

Department of Neurosurgery, Busan Bumin Hospital

Objective: There are several causes of non-traumatic cortical subarachnoid hemorrhage(SAH), including pial AVM, dural AVF, artery dissection, severe artery stenosis, cortical vein thrombosis, vasculitis, reversible cerebral vasoconstriction syndrome, posterior reversible encephalopathy syndrome, and coagulopathy. We report our experience with spontaneous cortical SAH associated with severe carotid bulb stenosis.

Methods: A 48-year-old male presented with headache and visual disturbance without head trauma. As standard workup, brain CT, MRI, and MRA was done which demonstrated Rt. Parieto-occipital cortical SAH, and Rt. Carotid bulb severe stenosis. Perfusion MRI was performed for Rt. Carotid bulb severe stenosis. Perfusion MRI showed Rt. MCA territory perfusion delay, especially MCA-PCA watershed zone. Rt. Carotid bulb stenosis was diagnosed in NASCET 85% by TFCA. The cause of parieto-occipital cortical SAH seen on brain CT in the absence of trauma was unknown, so a literature review was conducted. It was confirmed that severe carotid bulb stenosis can cause cortical SAH, and it was confirmed that it is an indication for early carotid bulb stenting. We decided to treat Rt. Carotid bulb severe stenosis with a stent. Procedures were performed using Protege stent and there were no procedure related complication. He was discharged 7 days later without neurologic deficit.

Result: If carotid bulb stenosis is severe, Posterior cerebral artery(PCA)-Middle cerebral artery(MCA) leptomeningeal compensation flow is supplied through PCA. Spontaneous cortical SAH can occur when the fragile pial PCA-MCA leptomeningeal artery is ruptured due to hemodynamic stress. Spontaneous cortical SAH due to carotid bulb stenosis should be considered a risk factor for ischemic stroke. When spontaneous cortical SAH occurs in the setting of carotid bulb stenosis, Carotid bulb stenting should be considered.

Conclusion: If a patient with non-traumatic cortical SAH comes to the hospital with headache and there is no apparent cause in the intra-cranial artery, Carotid bulb evaluation is considered necessary.

Pseudoaneurysm formation caused by stenting for intracranial atherosclerotic stenosis: A case report

Youngsoo Kim, Sangyoung Kim, Haemin Kim, Yeon-Ju Choi, Suntak Jin, Dongwoo lee, Daeyoung Hong, Mun-Chul Kim

Department of Neurosurgery, Pohang Stroke and Spine Hospital

Objective: This is a report of pseudoaneurysm formation after stenting Intracranial atherosclerotic stenosis (ICAS).

Methods: A 72-year old patient presented with dysarthria and right hemiparesis. Brain diffusion-weighted image(DWI) revealed acute ischemic lesions in the internal watershed area of the left cerebral hemisphere. Secondary prevention therapy was started according to guidelines for ischemic stroke treatment with aspirin, clopidogrel, and rosuvastatin. After 14 days of admission, the patient had a nearly full clinical recovery, with residual slight motor deficit of the distal right upper limb. Conventional angiography and sequential CT angiography revealed aggravation of severe stenosis (about 75%) at left distal ICA and proximal M2. Also, perfusion-weighted image(PWI) showed increased the time to peak(TTP) and size of the lesion.

Result: After 30 days of the attack, the patient underwent endovascular treatment for ICAS. Under general anesthesia, a Wingspan stent $(3.5 \times 15 \text{ mm})$ was deployed. a $3.0 \times 20 \text{ mm}$ -sized Reurei balloon was used with step-wise inflation (4 atm 7 atm for 30 seconds each). Then Post-operative angiography showed good patency of the MCA, but severe stenosis of distal ICA. An Energy balloon mounts stent $(4.0 \times 15 \text{ mm})$ was deployed with 9 atm inflation pressure. After stent placement, an abnormal pseudo sac appeared at the distal ICA. Pseudosac embolization was done with 3 detachable coils and additional Neuroform ATLAS stent immediately (Occluder-like way). Postop CT showed no bleeding or acute complication. However, the patient had drowsy consciousness and right hemiparesis of grade 4 on the postoperative day. After another a month later, the newly developed infarction was well resolved. The patient had minimal motor weakness on hand grasping at 3 month clinical follow-up.

Conclusion: This is report shows the pseudoaneurysm formation after stenting ICAS lesion which was successfully treated occluder-like way coil embolization.

MEMO	

The 15th Annual Summer Conference on Endovascular Neurosurgical Therapy

ASCENT 2021

Theme: Exploring What is Next in Neuroendovascular Surgery

인 쇄 일 2021년 6월 23일 발 행 일 2021년 6월 25일

발 행 처 대한뇌혈관내치료의학회

회 장 윤석만 총무이사 박석규 학술이사 권순찬

주 소 서울시 서초구 서초대로 350 (서초동 동아빌라트 2타운) 407호

제 작 엘에스커뮤니케이션즈

소 서울특별시 동대문구 천호대로85길 17 압구정빌딩 6층 TEL: 02) 476-6718

Stable platform for your procedure.

Strong support for delivering devices.

Enabling a smaller puncture site.

Q-Guard

Topical Hemostatic Dressing / Bleeding Control / Kaolin

큐가드는 체내에 알레르기나 면역 반응을 유발하지 않고 지혈을 촉진시키는 카올린(Kaolin)이 거즈에 특수 코팅되어 광범위한 영역의 출혈을 억제하기 위해 사용하는 지혈용 드레싱입니다

품목명 국소지혈용드레싱

제품명 Q-Guard / 큐가드

원 재 료 카올린(Kaolin), 거즈(레이온)

가 격 법정비급여

포장단위 10EA / Box

 2×2 Hemostatic Dressing

4 x 4 Hemostatic Dressing

Z-Fold Hemostatic Dressing

3 x 10 Hemostatic Dressing

Cilostazol + Ginkgo biloba ext. 복합 서방정 혈전생성 억제'와 신경보호'를 동시에

1일 1회 복용으로 복약순응도 향상 기대³ │ 기존 IR 대비 이상사례 발현 유의하게 개선⁴

Cilostazol 200ma Ginkgo Biloba ext. 160mg

[References] 1, Ryu KH, et al. Ginkgo biloba extract enhances antipolatelet and antithrombotic effects of cilostazol without prolongation of bleeding time. Thrombo Res. 2009;124:328-334 2, Kwak PA, et al. Supra-Additive Neuroprotection by Renexin, a Mixed Compound of Ginkgo Biloba Extract and cilostazol, Against Apototic White Matter Changes in Rat after Chronic Cerebral Hypoperfusion. J Clin Neurol. 2012 Dec; 8(4): 284–292 3. Bae JP, et al. Adherence and dosing frequency of co Data on file, SK키미칼. [Updated 2019.04.09]

리넥신서방정 제품요약정보

[선분의학]
[제품명] • 리넥신서방정 [원료약품 및 그 분량] 이 약 1정 중 유효성분 : 실로스타졸(JP)····200 mg, 은행업건조엑스(생규) ····160 mg [성 상] 연두색의 타원형 서방성 필름코팅정 [효능·효과] 다음 질환에 대하여 실로스타졸 단독요법으로 효과가 불충분한 경우, 실로스타졸과 은행업건조엑스 제제의 병용요법에 대한 대체요법 1. 만성동맥폐색증(버거씨병, 폐색성 동맥경화증, 당뇨병성 말초혈관병증 등)에 따른 궤양, 동통 및 냉감 등 허혈성 제증상의 개선 2. 뇌경색(심인성 뇌색전증 제외) 발증 후 재발업제 [용법·용황] 이 약은 서방정 정제이므로 분쇄하거나 분할 또는 접지 않고 전체를 복용하며, 식사를 피하여 공복 상태에서 복용한다. 이 약은 1회 용량으로 실로스타졸 100일리그램과 은행업건조엑스 80일리그램을 1일2회 병용투여시효과가 충분한 성인 환자에 대하여 대체요법으로 투여한다. 통상 성인에 대하여 1일1회, 1회 1정을 경구 투여한다. [사용상의주의사항] 1. 경고. 이 약은 실로스타졸 투여로 인해 맥박수가 증가하여 협심증이 발현될 수 있으므로 협심증의 증상(가슴통증등)에 대한 문진을 주의 깊게 실시한다(뇌경색 재발 억제효과를 검토하는 시험에서, 장기간에 걸쳐 PRP(pressure rate product)를 의미있게 상승시키는 작용이 인정되었다. 또한, 실로스타졸 투여군에서 협심증이 발현된 중례가 나타났다. 2. 다음 환자에는 투여하지 말 것. 1) 출혈(열우병, 모세혈관 취약증, 두개내출혈, 상부소화관출혈, 요로출혈, 객실, 초자체출혈 등) 또는 그러한 소인(활동성 소화궤양, 최근 6개월 이내에 출혈성뇌졸중, 3개월 이내에 외과수술, 증식당뇨망막병증, 조절되지 않는 고험한 지원에 있는 한 보험 문자에는 신축하고 있을 가능성이 있는 이성 및 수유부 3. 다음 환자에는 신축하고 있을 하는 함께 있는 한 경상 보험에 있는 한 경상 보험에 있는 한 경상 보험에 있는 한 경상 보험에 있는 한 경상 보험을 조장할 우리가 있다. 2) 울혈성심부전 환자(증상을 악화시킬 우려가 있다 3) 과 당 및 이 약의 구성성분에 과인반응의 병력이 있는 환자 4) 임부 또는 임신하고 있을 구성하여 있는 한 사업을 수 있다. 5) 중등도 또는 중증 간장에 환자(이 약의 혈증농도가 상승될 수 있다.) 5) 중등도 또는 중증 간장에 환자(이 약의 혈증농도가 상승될 수 있다.) 5) 중등도 또는 중증 간장에 환자(이 약의 혈증농도가 상승될 수 있다.) 5) 당뇨 또 환자(출혈을 조장함 우리하지 않는 환자(출혈을 조장함 가능성의 있는 한 경상 환자(의 악의 투여에 의한 맥박수 증가로 협심증을 유발할 가능성이 있다.) 4) 중증 신장에 환자(그레이타인 청소율 ≤ 25 m./분)(이 약의 대사물의 혈중농도가 상승될 수 있다.) 5) 중등도 또는 중증 간장에 환자(이 약의 혈증농도가 상승될 수 있다.) 5) 당뇨 환자(화 학의 환경을 상용성 유해증상이 발한하기 성인기 시작으로 할인이 상승하고 있는 고혈압 환자(악성고혈압 등) 8) 나라나는 신청으로 부자 자각 후 소구 환자 자식 6실 단취 도착점 시작 후 사업으로 함입한 환자(학생의 환자 (시설시점) 소수보 후 지상 후에 있게 보고 함께 보고 함 또는 다초점성심실이소성박동 환자, QT간격의 연장이 있는 환자 9) S자형 심실 중격이 있거나 위험이 있는 환자(특히 고령자) : S자형 심실 중격 환자에서 좌심실 유출로 폐쇄가 보고되었다. 실로스타졸 복용 시작 후 새로운 수축기 잡음 혹은 심장 증상의 발생 여부를 모니터링 한다. [제조자] 에스케이케미칼(주) 충청부도 청주시 흥덕구 산단로 149 [판매자] 에스케이케미칼(주) 경기도 성남시 분당구 판교로 310 2020.03.24

※ 처방하시기 전 제품설명서 전문을 참고하십시오. 최신 허가사항에 대한 정보는 '식품의약품안전처 의약품안전나라 (https://nedrug.mfds.go.kr/index)'에서 확인할 수 있습니다.

CERENOVUS Galaxy G3 Coils

GALAXY G3 TOTAL SOLUTION

High Purity Rosuvastatin Rovetin Tab.

이상지질혈증을 처음 진단받은 환자에게, 일동제약이 직접 생산하는 <mark>로베틴</mark>으로 지질관리를 시작하세요.

Rosuvastatin 5mg, 10mg, 20mg

10 MILLION + REPAIRS[†] DON'T JUST CLOSE, REPAIR.

BraccoThe contrast imaging specialists

The **Strength** of Relaxivity

US Imaging

ExperienceReal Time Diagnosis

Macrocyclic

ProHance

CT Imaging

MR Imaging

iopamiro®

Trust Experience Choose **Confidence**

CT Imaging

iomeron®

The **Premium** Iodine Concentration Matters

서울시 강남구 역삼로 233 신성빌딩 4층 브라코이미징코리아 대표전화: 02-2222-3500. 팩스: 02-2222-3551

Alfoatilin

되기능 개선제 알포아티린®

(Choline alfoscerate)

연질캡슐, 정제, 리드캡슐 3종의 제형으로 보다 다양한 치료 옵션을 제공합니다.

알포아티린정

알포아티린연질캡슐

※제품의 실제 크기와 다릅니다.

알포아티린®정(콜린알포세레이트)

알포아티린®연질캡슐(콜린알포세레이트

Telea. MEDICAL

VESALIUS ESSENTIAL

THE QUANTUM MOLECULAR RESONANCE GENERATOR

QMR: an innovative and unique technology lor the human health that improves the quality of life

RESEARCH AND DEVELOPMENT FOR THE PATIENT

KEY FEATURES:

- Bipolar Coagulator for Neurosurgery
- Five different coagulation modes
- SMART Technology on board
- Efficient in liquid pools
- Easy to use
- Wide range of accessories

Product code: 2501029

Vesalius[®]

서울특별시 강남구 역삼동 678-5 우성빌딩 4층 TEL: 02-538-2561~5, FAX: 02-538-2566