BNET 2nd: Aneurysmal coiling

일시: 2023년 **4**월 **8**일(**토**)

장소: 대웅제약본사 별관 베어홀 (지하1층)

(서울 강남구 봉은사로 644)

주최: 대한뇌혈관내치료의학회

주관: 대한신경외과학연구재단

회원 여러분 안녕하십니까?

2020년에 시작된 Basic NeuroEndovascular Training Course (BNET Course)를 2023년에도 이어가려고 합니다.

이 분야를 시작한지 얼마 되지 않은 회원님들(전임의 및 Junior staff)을 대상으로 하고 있으므로, 아주 기본적인 내용으로 구성하였습니다.

총 3번의 코스를 계획하고 있으며, 다음과 같이 구성하였습니다.

세 코스 모두 신청 혹은 부분 신청 가능합니다.

- 1. General aspects of neuroendovascular approaches
- 2. Aneurysmal coiling
- 3. Carotid stenting and Mechanical thrombectomy

병원 업무로 바쁘시겠지만, 이번 베이직 코스에 꼭 참여하여 지식을 습득하고 기본 술기를 향상시키는 계기가 되기를 기원합니다.

감사합니다.

2023년 4월 8일 대한뇌혈관내치료의학회 회장 장철훈 부회장 권순찬 총무이사 김영우 수련교육이사 김태곤, 박중철

PROGRAM ...

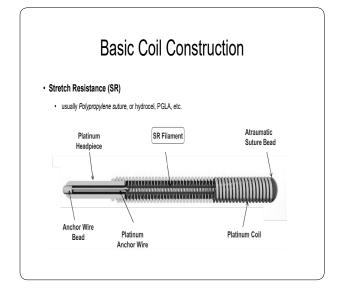
일시: 2023년 **4월 8**일(**토**)

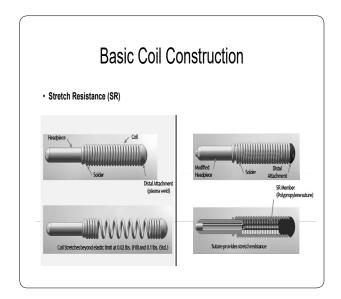
장소 : 대웅제약본사 별관 베어홀

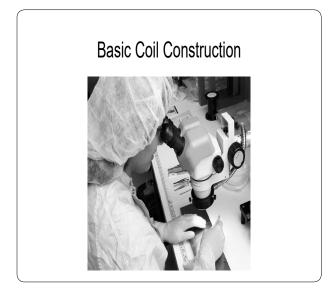
08:30-08:50	Registration				
00.50 00.00	Course Introduction	김태곤	고 차의과학대 분당차병원		
08:50-09:00	Welcome Address	강철훈	KoNES 회장		
09:00-09:30	Coil의 종류와 특성	이종영	한림대 강동성심병원	07	
09:30-10:00	Microcatheter-assisted coiling technique - including working angle, shaping, multiple catheter technique	박중철	울산대 서울아산병원	17	
10:00-10:30	Balloon-assisted coiling technique - including balloon 종류와 특성	오재상	가톨릭대 의정부성모병원	25	
10:30-11:00	Stent-assisted coiling technique - including stent 종류와 특성	박근영	연세대 세브란스병원	43	
11:00-11:30	Management of complications – including perioperative rupture, thrombus formation	윤원기	고려대 구로병원	63	
11:30-12:00	Lunch				
12:00-13:00	Hands-on (Endovascular coiling using balloon, stent)		All		
	Closing & Photo time	김영우	KoNES 총무이사		

Coil의 종류와 특성

이 종 영 한림대 강동성심병원

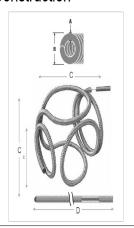

Aneurysm Coils


Jong Yong Lee, MD, PhD.


Hallym University Kangdong Sacred Heart Hospital

Basic Coil Construction A coil starts out as a single, platinum primary wire. The thickness of this wire can have a significant effect on the coil's characteristics The primary wire (A) is wound around a thin, cylindrical mandrel to create the primary coil (B)

Basic Coil Construction • The primary coil is then wound around a different mandrel and heat-set to create the coil's secondary shape (C). • Helical coil • opfindrical mandrel Primary coil Secondary Shape Primary wire Shape



Basic Coil Construction

- · Coil Dimensions
 - A. Primary Wire Diameter (in)
 - B. Primary Coil diameter (in)
 - C. Secondary Coil diameter (mm)
 - D. Coil Length (c m)
 - E. Diameter of 2D loop (mm) 75% of secondary coil diameter

Basic Coil Construction

· Coil Dimensions

A. Primary Wire

. . . .

Platinum alloy (90% platinum, 10% tungsten)

Measured by outside diameter (OD) in inch

Various size (0.0015, 0.0017, 0.002 etc.)

B. Primary Coil

Measured by outside diameter (OD) in inch

Determines the coil OD size

0.010 - 10 system coil

0.012 - 12 system coil

0.014 - 14 system coil

0.015 - 18 system coil

Basic Coil Construction

- · Coil Dimensions
- C. Secondary shape

Determine the coil loop size and shape

helical 2mm, Complex 6mm, 3D 5mm

Various different secondary shape. Some are industry standard and some are manufacturer specific

Helical – standard

 $3D,\,360^{o}-target\ specific,\ Complex-Optima\ specific,\ Complex\ 1D-Microvention\ specific$

Coil Types

- Three different types based on the coil primary coil, secondary shape, and the coil size
 - Frame: used to form a basket or frame into the aneury sm in order to deposit additional coils
 - Filling : used to fill in the frame or basket coil and provide a dense packing
 - Finishing: very soft and small coils, used to finish, generally the last coils placed at the neck

Coil Types

- Three different types based on the coil primary coil, secondary shape, and the coil size
 - Frame: used to form a basket or frame into the aneury sm in order to deposit additional coils
 - Filling: used to fill in the frame or basket coil and provide a dense packing
 - Finishing: very soft and small coils, used to finish, generally the last coils placed at the neck

Coil Types

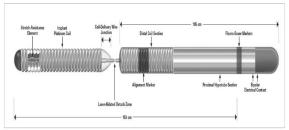
- Framing coil
 - 3D, 360°, Complex, Frame etc.
 - Designed to give the initial stability and protection to the aneurysm.
 - Creates neck bridge
 - Covers the neck with several coil loops
 - Allow subsequent coils placed to remain inside the
 angurusm

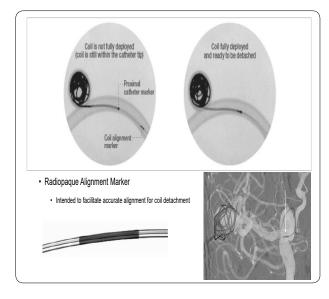
Coil Types

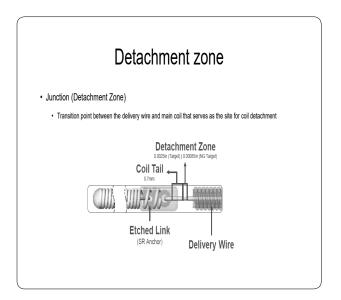
- Filling coil
 - Used to fill in the frame coil and provide a dense packing
 - Generally helical, or complex type
 - Available in many diameters and lengths to accommodate the needs of the aneurysm

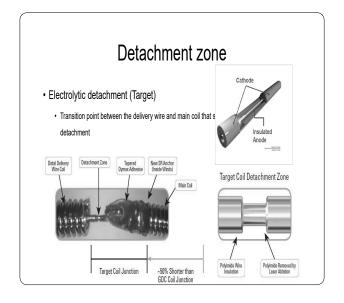
Coil Types

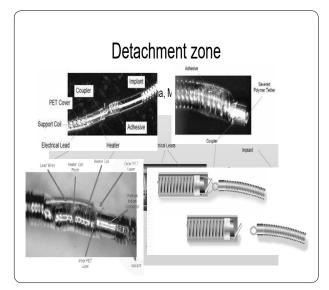
- Finishing coil
 - Very soft and small coils, used to finish at the neck.
 - Ultrasoft, hypersoft, mini etc...
 - Very little space left for a coil to fit into towards the end of the cases
 - · Generally helical, but could also be complex type

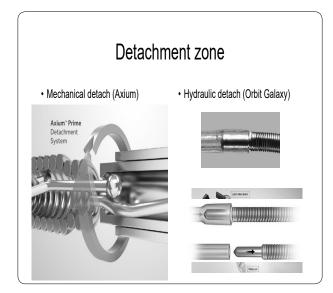


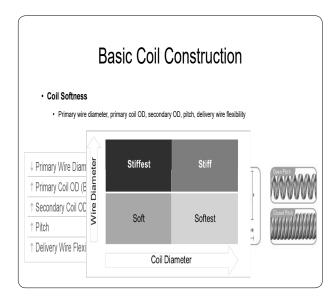

Delivery wire


- Impact on coil performance
 - Push the coil through tortuous anatomy into the aneurysm
 - Translate manipulation of the proximal end to predictable coil movement at the distall end
 - Translate coil movement at the distal end to tactile sensation at the proximal end
 - Deliver current to detach the coil

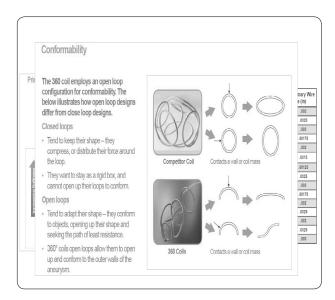

Delivery wire

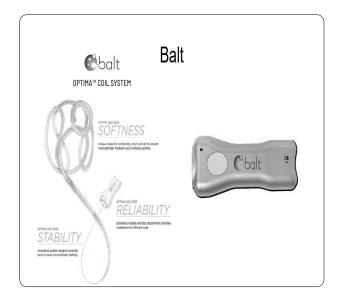

- Hybrid design: Hypotube + Flexible coil construction
- Usually bipolar pathway, mechanical also.
- Radiopaque alignment marker, Fluorosaver Marker

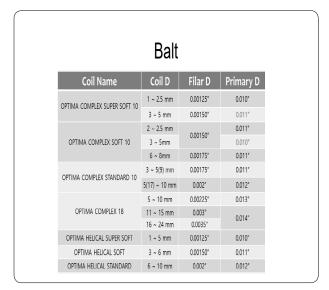


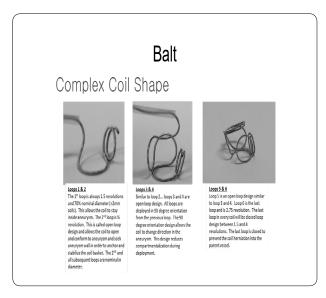


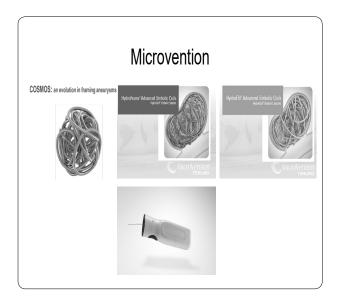


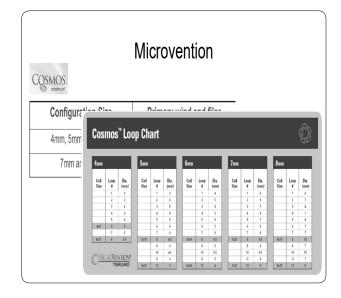


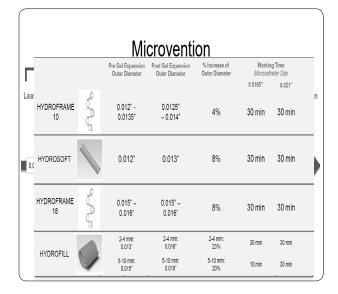


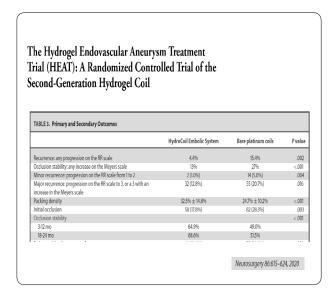


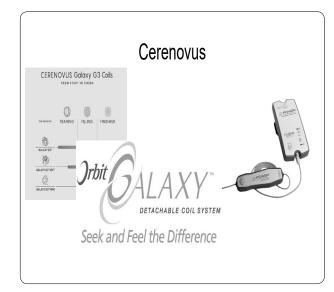


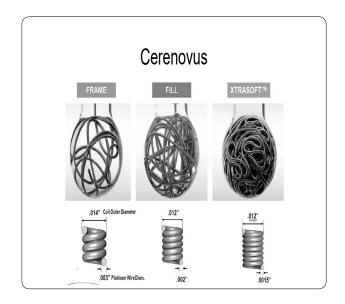


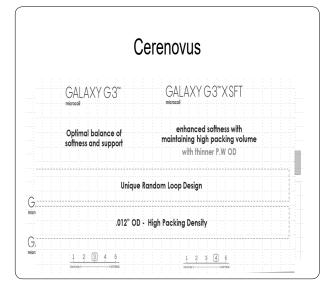


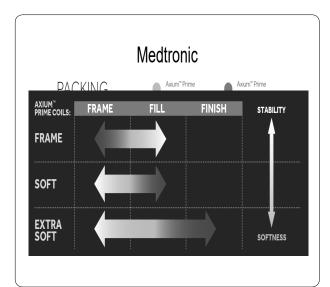












MEMO ///////////////////////////////////

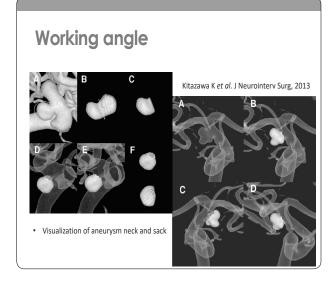
MEMO ///////////////////////////////////

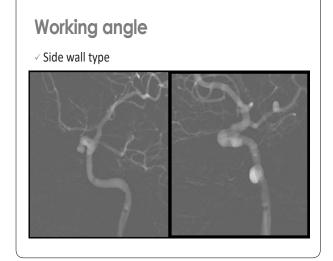
Microcatheter-assisted coiling technique - including working angle, shaping, multiple catheter technique

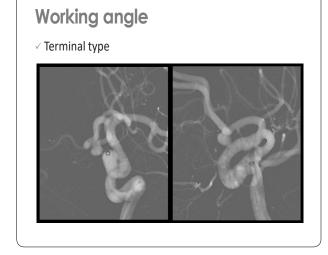
박 중 철 울산대 서울아산병원

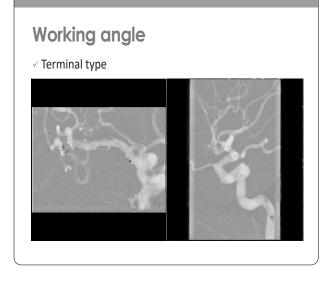
Microcatheter-assisted coiling technique: including working angle, shaping, multiple catheter technique

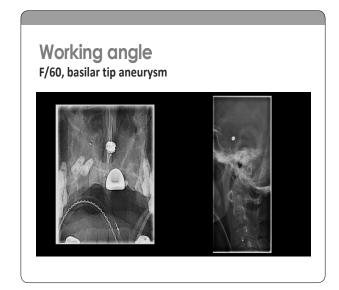
Jung Cheol Park

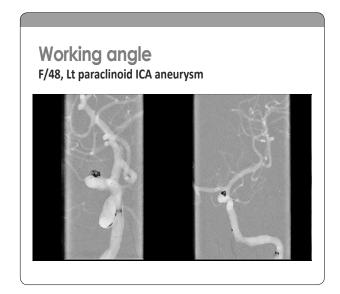

Department of Neurosurgery,

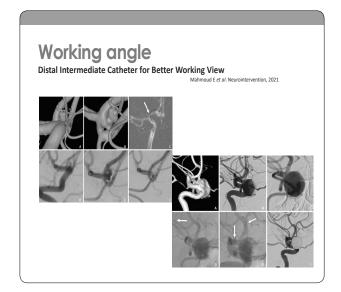

Asan Medical Center

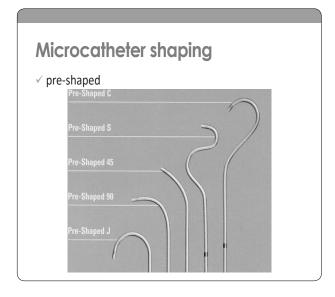

University of Ulsan College of Medicine, Seoul, Korea

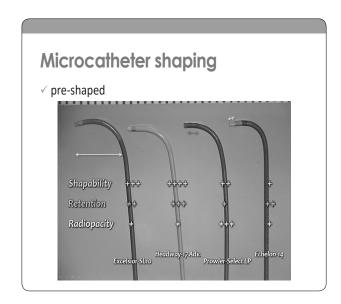

Working angle

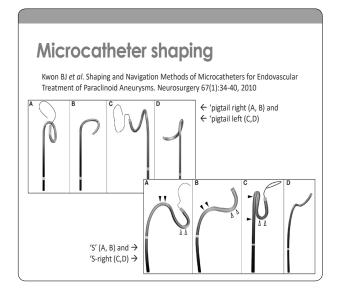

- ✓ 3-Dimensional aneurysm → 2-D specific X-ray image
- √ working projection, working view
- √ should be optimal for
- measuring the aneurysm sac diameter
- $\,{}^{\circ}\,$ inserting the first coil, feasibility for coiling
- checking coil overhang into the surrounding vessels
- accessible for device
- · not fixed, but changeable

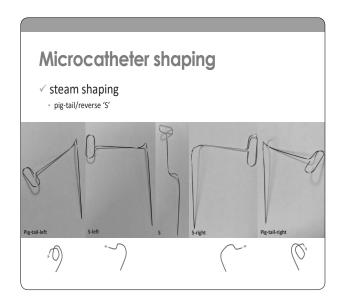


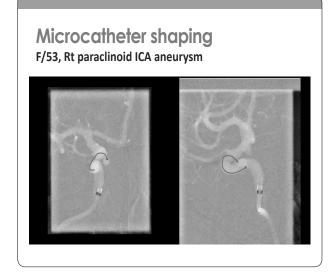


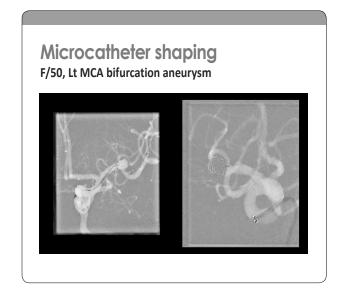


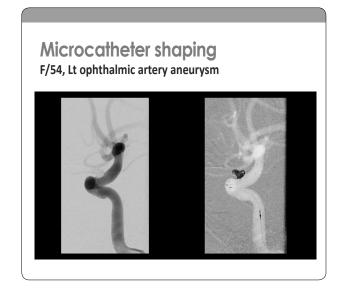


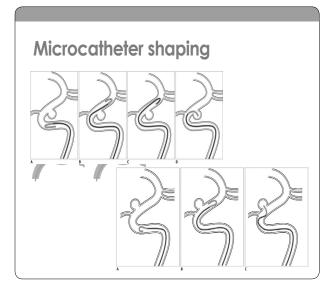




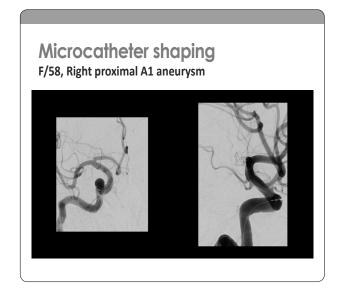


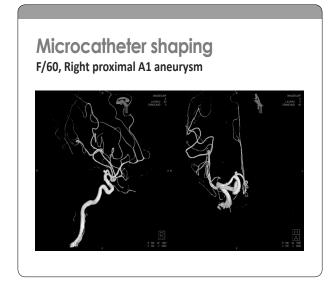


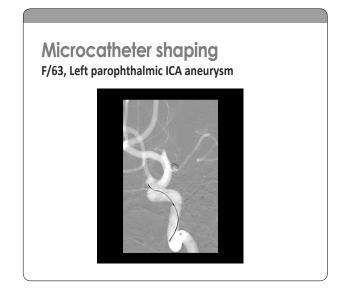


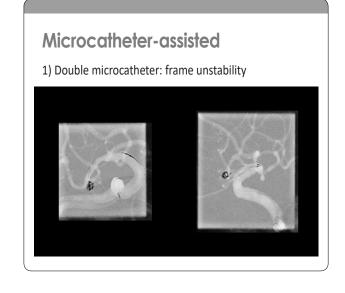

Aneurysm selection

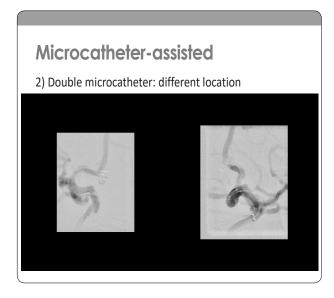
- ✓ Microcatheter directed
- ✓ Wire steering
- √ Wire directed (guided) X
- √ Wire looping
- √ Coil guided

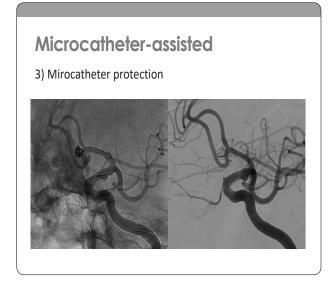


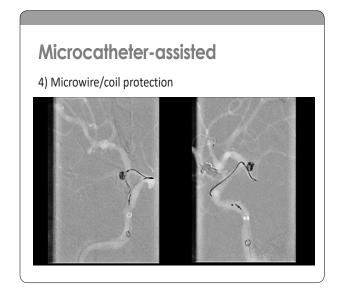


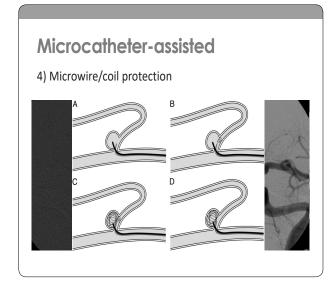


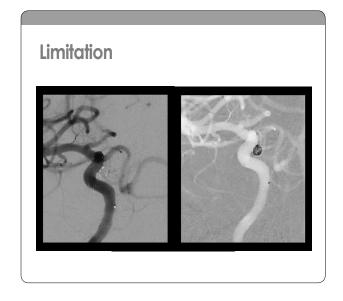



Microcatheter shaping
F/41, basilar tip aneurysm









MEMO ///////////////////////////////////

Balloon-assisted coiling technique - including balloon 종류와 특성

오 재 상 가톨릭대 의정부성모병원

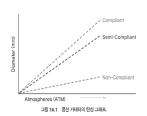
Balloon assisted Coiling 풍선 보조하 코일 색전술

오재상 가톨릭대학교 의정부 성모병원

Wide neck aneurysm

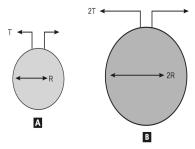
Balloon assisted coiling

- 경부가 넓은 뇌동맥류(wide-necked aneurysm, neck size ≥ 4 mm 록은 dome-to-neck ratio 2.0)
- 어려운 점
- 코일의 이동 (migration)
- 완전 폐색의 어려움
- 1997 Moret 처음 소개
- BAC 의 순서
- Inflation , Coiling, deflation, Coil detachment
- Packing density 높이기

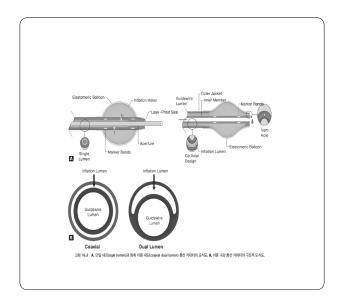

풍선 Balloon

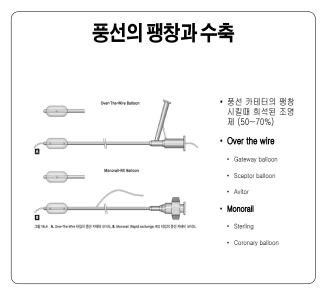
- 1974년 Gruentzig & Hopff: polyvinyl chloride (PVC) 이용
- Walter Schlumpf: 최초의 PVC 소재의 풍선 카테터
- 1977년 Gruentzig가 첫 번째 경피경관 관상동맥성형술 (percutaneous transluminal coronary angioplasty, PTCA)을 시행
- 1977년 Mathias 경동맥 풍선 성형술 성공

풍선의 소재와 탄성


- Polyvinyl chloride (PVC)
- 고탄성 압력에 쉽게 반응하고 직경을 증가
- PE, polyethylene terephthalate (PET), nylon, polyurethane
- 저탄성 PTA 적합
- 탄성 한계점에 이를때까지 풍선 직경의 변화가 없음

탄성과풍선


- **Highly compliant balloon** : 파열압력 도달시 표준압력에서의 직경보다 10% 이상 팽창, Balloon test occlusion
- Compliant balloon : 1기압 이하의 저압력에서 조영제 용량에 따른 변화, BAC
- Non-compliant balloon & Semi-compliant balloon : 표준압력에서 직경 10% 미만, ICAS 로 인한 PTAS


탄성과풍선

R = Radius of circle A T = Outward force of balloon A

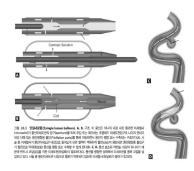
그림 **16.2** Laplace 공식(T = P \times R), 그림에서 A와 B는 동일한 팽창 압력을 갖는다.

제조사	제품명	탄성	내강 구조	적응증	유도철사	풍선 직경	풍선 길이
Acandis	Neurospeed	반 탄성	동축 이중내강	풍선 혈관성형술	≤ 0.014"	1.5~4.0 mm	8 mm
Stryker	Gateway	반 탄성	동축 이중내강	풍선 혈관성형술	≤ 0.014°	1.5~4.0 mm	9/15/20 mm
	TransForm	고 탄성 초 고탄성	단일 내강	풍선 폐쇄 검사 풍선 보조 색전술	≤0.014*	3~5 mm	10~30 mm
				뇌철관연축		3~7 mm	5~15 mm
Medtronic	HyperForm™	초 고탄성	단일 내강	풍선 폐쇄 검사 풍선 보조 색전술 뇌혈관연축	0.010"	4/7 mm	7 mm
	HyperGlide™	고 탄성	단일내강	풍선 폐쇄 검사 풍선 보조 색전술 뇌혈관연축	0.010*	4 mm 5 mm	10/15/20/30 mm 15/20 mm
Codman	Ascent®	High compliant	동축 이중내강	풍선 폐쇄 검사 풍선 보조 색전술 뇌혈관연축	≤0.014°	4.0 mm 6.0 mm	7/10/15 mm 9 mm
Microvention	Scepter C™	고 단성	동축 이중내강	풍선 폐쇄 검사 풍선 보조 색전술 뇌혈관연축	≤ 0.014 [*]	4.0 mm	10/15/20 mm
	Scepter XC™	초 교탄성	동축 이중내강	풍선 폐쇄 검사 풍선 보조 색전술 뇌혈관연축	≤0.014*	4.0 mm	11 mm
BALT	Eclipse	초고탄성	단일 내강	풍선 폐쇄 검사 풍선 보조 색전술 뇌혈관연축	≤0.012°	4~6 mm	7/9/12/15/20 mi
	Eclipse 2 L	초고탄성	이중 내강	풍선 폐쇄 검사 풍선 보조 색전술 뇌혈관연축	≤0.014*	6.0 mm	7/9/12/20 mm
	Copernic	고 탄성	단일 내강	풍선 폐쇄 검사 풍선 보조 색전술 뇌혈관연축	≤0.012 [*]	3~5 mm	10/15/20/30 mm
	Copernic RC	고 탄성	단일 내강	정맥 경유 색전술	≤ 0.014"	8 mm	80 mm

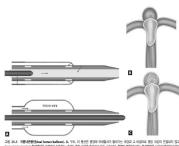
Variables	BAC (n = 81)	Non-BAC (n = 355)	pvalue
Female sex, n (%)	66 (81.5)	246 (69.3)	0.03*
SAH, n (%)	47 (58)	193 (54.4)	0.55
Location, n (%)			
ICA	52 (64.2)	136 (38.3)	
ACA	12 (14.8)	132 (37.2)	
MCA	7 (8.6)	37 (10.4)	
BA	8 (9.9)	39 (11)	
VA	2 (2.5)	11 (3.1)	
Mean aneurysm size (mm ± SD)	7.1 (± 4.2)	6.5 (± 4.0)	0.22
IAR n (%)	7 (8.6)	28 (7.9)	0.82
Timing of IAR, n (%)			0.67
Early (< 3rd coiling)	5 (71.4)	15 (53.6)	
Late (≥ 3rd coiling)	2 (28.6)	13 (46.4)	
TE, n (%)	6 (7.4)	16 (4.5)	0.27
Permanent TE	4 (66.7)	10 (62.5)	1
Recanalized TE	2 (33.3)	6 (37.5)	1
Poor outcome (GOS < 4)	7 (8.6)	38 (10.7)	0.58
Procedure related declined status	3 (3.7)	19 (5.4)	0.78

Balloon Remodeling May Improve Angiographic Results of Stent-Assisted Coiling of Unruptured **Intracranial Aneurysms**

RACKGROUND: Endovascular treatment of wide-necked and complex aneurysms may require stemt-sessisted coiling, either as primary stenting or combined with the balloon remodeling technique (BRT).


OBJECTIVE: To compare the anjographic results and clinical outcomes of both strategies in the Safety and Efficacy of Neuroform for Treatment of Intracanial Aneurysms SENATI registry.

METHODS: SENATI was a prospective multicenter registry that allowed BRT in conjunction with stenting and coiling with bare platinum coils. Clinical and anjographic outcomes of 79 patients with ununplatured aneurysms treated with stenting. SI after RRI (BRT+) and 46 without balloon assistance (BRT−), were retrieved from the SENAT database. Technical, clinical, and anjographic outcomes were compared between the 2 groups.


RESULTS: Periprocedural morbimortality and minterm clinical outcomes were not different between groups. Redidula aneurysms were observed in 78.96 of BRT+ and 12.7% of BRT+ 2 BRT−1. Wedve- to 18-month anatomic results showed a significant difference between groups, with a residual aneurysm being observed in 6.1% of BRT+ as compared to 22.7% of BRT− patients (P− 30).

CONCLUSION: Himmy BRT followed by semenasticated may be associated with lewer recidual aneurysms at 12 to 18 months as compared to stemt-assisted coiling alone. KTV WODDS: States, created anatomy. Cerebal aneurysm fractarial aneurysms at 12 to 18 months as compared to stemt-assisted coiling alone. KTV WODDS: States, created anatomy.

Single lumen balloon

Dual lumen balloon

BAC

- · CLARITY & ATENA
- SAH (20.8%), UIA (37.3%)
- · Low frequency in Acom & ACA
- OJS 7% 전후
- 최근 사용 빈도는 감소 추세
- 하지만 반드시 익히면 도움이 됩니다~!

Balloon time

An Analysis of Inflation Times During Balloon-Assisted **Aneurysm Coil Embolization and Ischemic Complications**

Alejandro M. Spiotta, MD; Tarun Bhalla, MD; Muhammad S. Hussain, MD; Thinesh Sivapatham, MD; Ayush Batra, BS; Ferdinand Hui, MD; Peter A. Rasmussen, MD; Shaye I. Moskowitz, MD, PhD

Background and Purpose—The introduction of balloon remodeling has revolutionized the approach to coiling of wide-neck aneurysms. We studied the effects of balloon inflation during ocil embolization on ischemic complications.

Methods—A retrospective review was undertaken of the most recent 147, patients undergoing balloon remodeling for unruptured intracential neurysm coil embolization at a single institution (81 balloon, 66 unassisted). All underwent posiprocedural MRI.

postprocedural MRI.

setudia—Among patients in the "balloon" group, the mean total inflation time was 18 minutes (range, 1–43), a mean number of inflations of 4 (range, 1–9), a mean maximum single inflation time of 7 minutes (range, 1–19), a mean reperfusion time of 2.2 minutes between inflations, and an average procedur time of 2 hours and 10 minutes. Asymptomatic distinsion-weighted mining abnormalities were detected on postprocedural MRI in 21/58 of patients and symptomatic lesions were identified in 3.8%. Both silent and symptomatic ischemic rates were similar in the internal control group. Patients with ischemic findings were older and more likely have dabetes; and differences were found with respect to total balloon inflation time, unmaker of inflations, maximum inflation time, or reperfusion times.

Conclusions—We found no significant relationship between halloon inflation practices and ischemic events of diabetic patients were more likely to have ischemic events develop. (Stroke. 2011;42:1051-1055.)

혈류차단시간

- 평균 총 풍선 팽창 시간은 18분(1~43분)
- 평균 풍선팽창 횟수는 4회(1~9회)
- 평균 1회 풍선 팽창시간은 7분 (1~19분)
- 각 풍선 팽창 사이의 재관류시간(reperfusion time) 은 2.2분
- 평균 시술 시간은 2시간 10분
- 시술 후 시행한 DWI에서 무증상의 양성 병변은 환자의 21.5%, 유증상의 양성 병변은 3.8%에서 발견됨
- 이 결과는 고식적인 치료군과 차이가 없어 풍선팽창 지속시간과 허혈성 뇌졸중 간에 의미 있 는 상관 관계는 없다고 하였다.
- 하지만 1회 풍선팽창시간이 길 수록 분수계성 뇌경색(watershed pattern infarction)과 의미 있는 상관관계가 있다고 보고하였기에 1회 동선팽창시간을 가 능한 짧게 하여야 하고 최대 10분 미만으로 하는 것이 중요함.
- 측부혈행을 미리 파악해두면 도움

Stroke 2011;42;1051

BAC의 장점

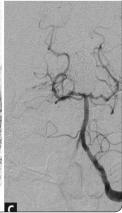
- 모동맥의 보호
- 코일 삽입중 미세도관 안정성 유지 및 재진입 용이
- 동맥류 충전밀도 증가
- 일시적 보조기구
- 파열시 혈류 차단 가능

BAC 합병증

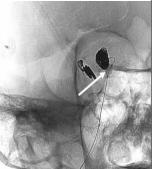
- 혈전 생성의 위험
- 혈액 저류로 인한 혈전 생성
- 코일의 이동
- 동맥류 파열
- Overinflation or rapid inflation
- 미세도관의 압박으로 동맥류 파열
- 풍선으로 미세도관 kick back 이 사라짐

헤파린 사용시기

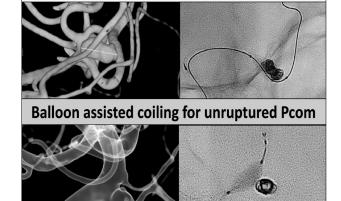
- 일반적으로는 UIA 는 바로 시술 시작때
- SAH는 first or second frame coil 마쳤을때
- 발룬 시작하면서 바로 ACT 2-3 배 맞추기 위해 사용

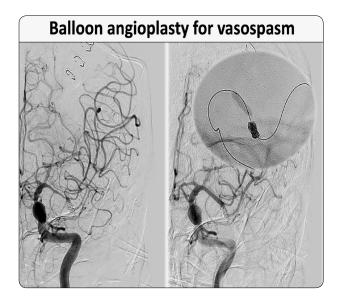

Balllon preparation

- 제일 중요한 step
- Air bubble 이 생기지 않게
- 천천히
- 직접

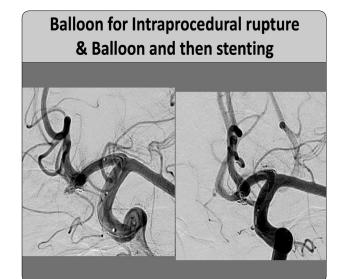

거대 동맥류 BAC

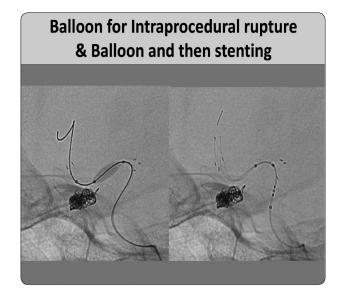
동맥류 경부에서 분지혈관 기시

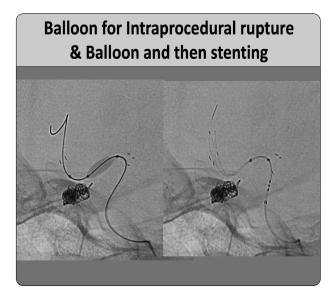


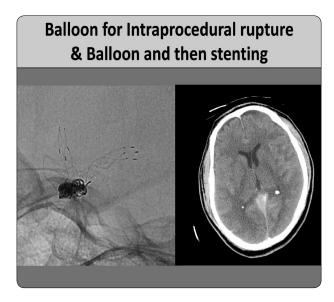

모호한경계의모동맥보호

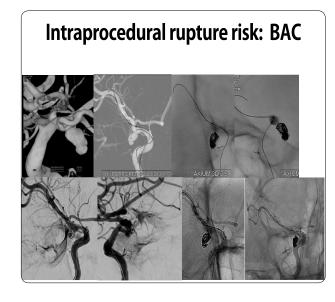
Balloon assisted coiling for ruptured MCBF

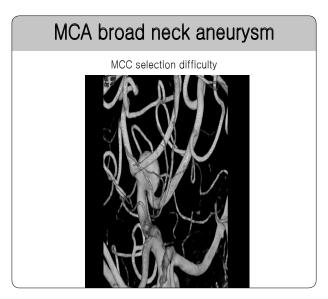

Balloon for Intraoperative rupture & Balloon and then stenting

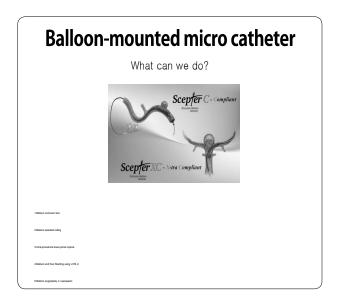


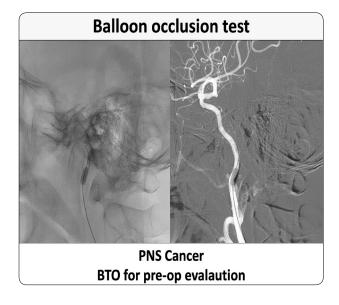

Very Small aneurysm on Acom

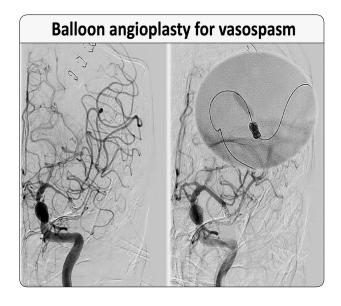

Hx: SLE , Cerebral infarction with Intracranal Dissection


Medication : Anticoagulant

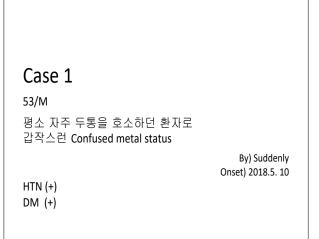


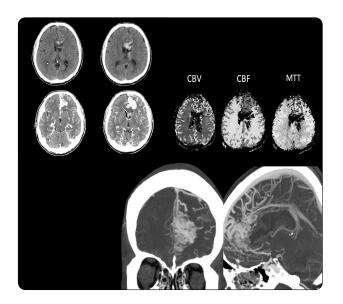


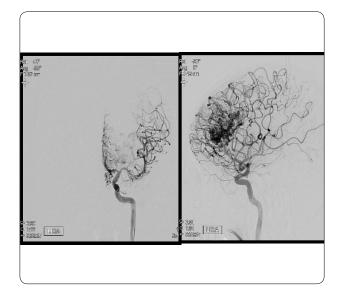


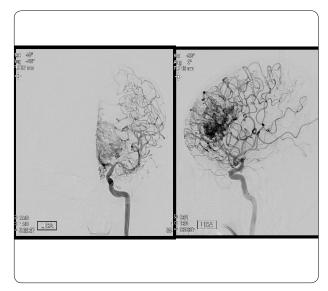


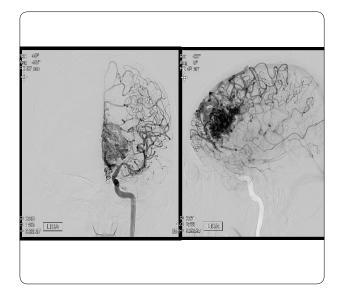
Balloon-mounted micro catheter 로 할 수 있는 것들?

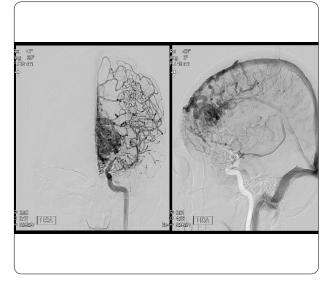


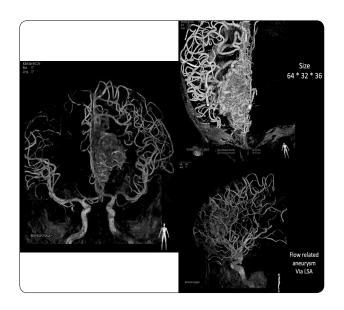


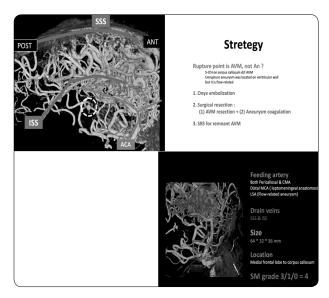

Dual lumen balloon microcatheter

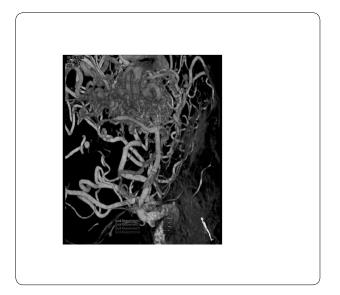

Recent in a case of..

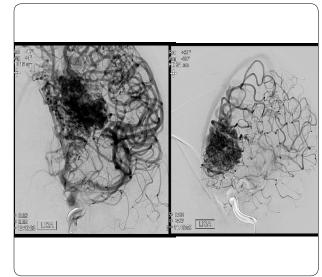

- 1.Balloon occlusion test
- 2.Balloon assisted coiling
- 3.Intra-procedural aneurysmal rupture
- 4.Balloon and then Stenting using LVIS Jr
- 5.Balloon angioplasty in vasospasm
- 6.Liquid (Onyx, Phil) injection

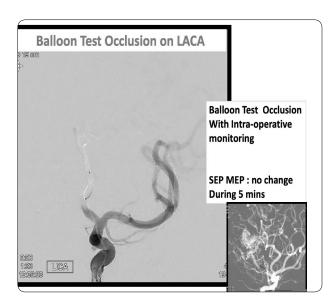


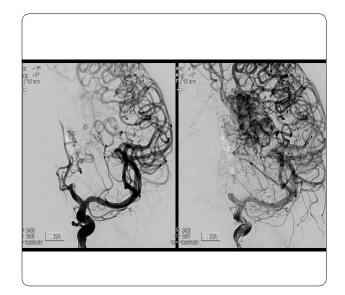


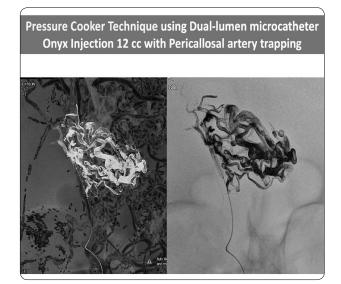


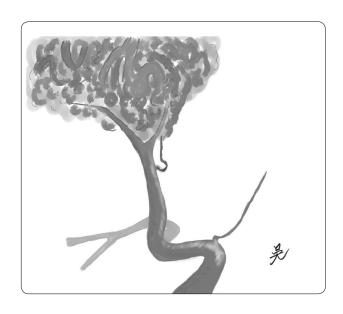


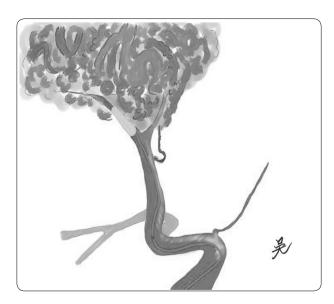


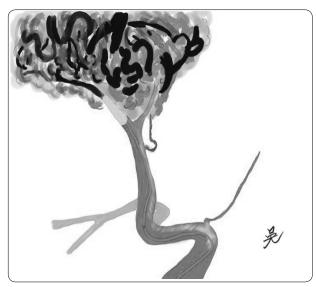


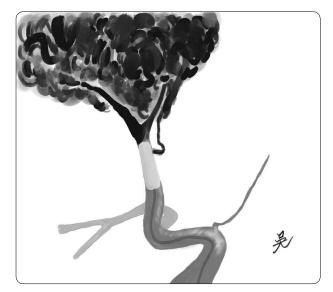


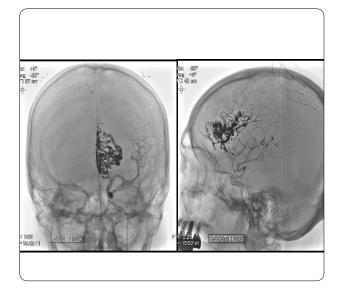


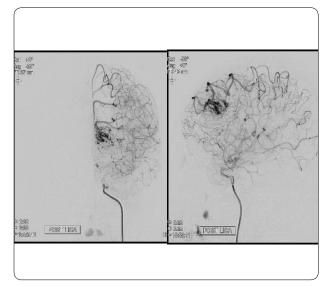


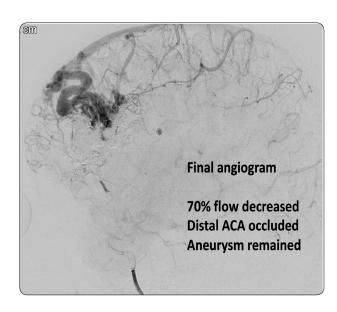


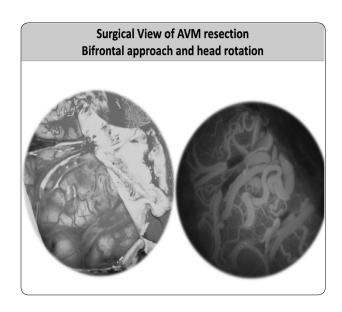

Pressure Cooker Technique using Dual-lumen microcatheter
Onyx Injection with Pericallosal artery trapping

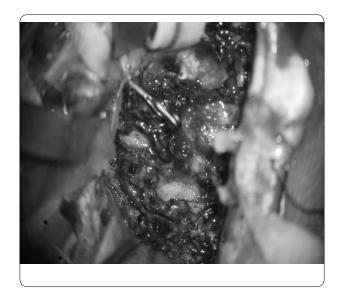

Pressure Cooker Technique using Dual-lumen microcatheter
Onyx Injection 6 cc with Pericallosal artery trapping

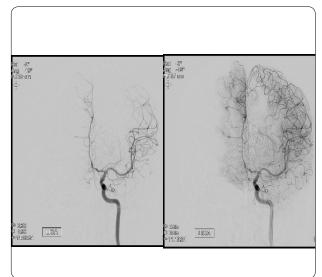


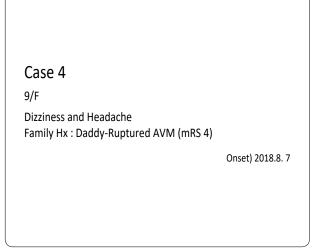


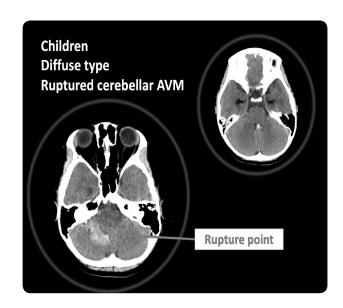


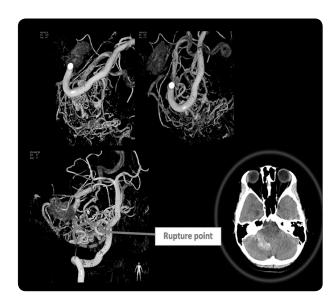


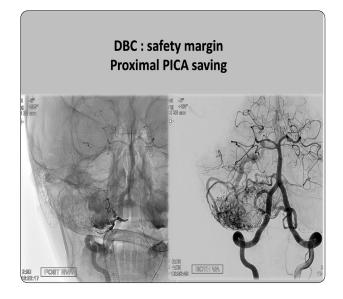


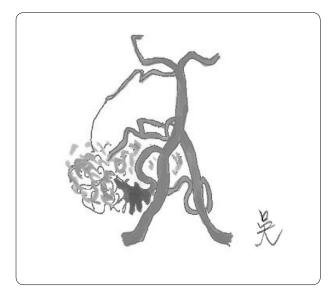


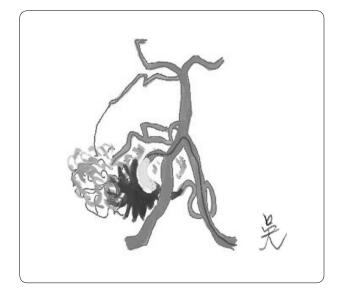


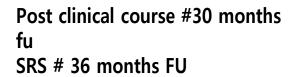




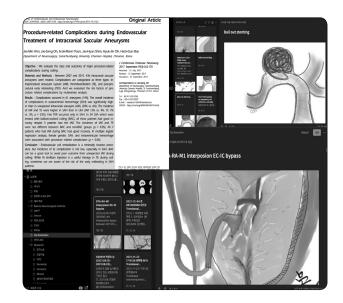








Diffuse type cerebellar AVM in children


Balloon 으로 PICA proximal saving margin

현재 : mRS 0

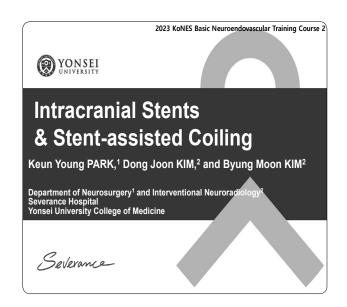
Keynote

- Now Stent era... SAC and Flow diverter ..
- Balloon is the double edged sword.
- If you use the balloon-mounted micro catheter,,
- \bullet You make the patients better \cdots in some cases

이창호 9단

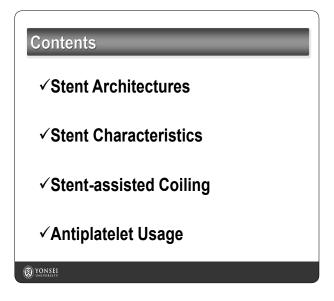
재능을 가진 상대를 넘어서는 방법은 노력뿐이다. 더 많이 집중하고 더 많이 생각하는 수 밖에 없다. 바둑에는 '복기'라는 훌륭한 고사가 있다.

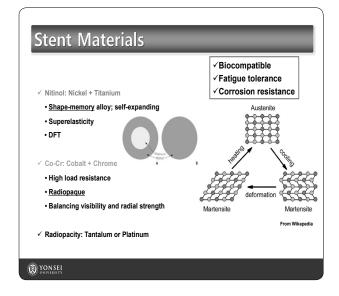
승리한 대국의 복기는 '이기는 습관'을 만들어주고 패배한 대국의 복기는 '이기는 준비'를 만들어 준다

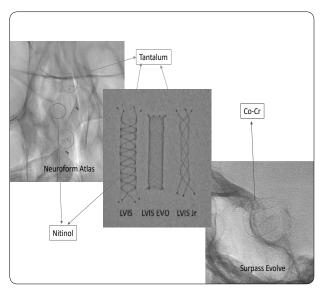

MEMO ///////////////////////////////////

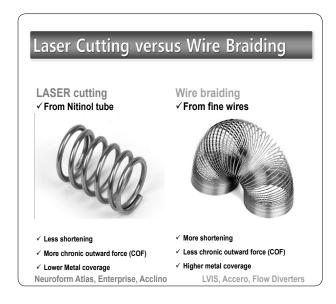
MEMO ///////////////////////////////////

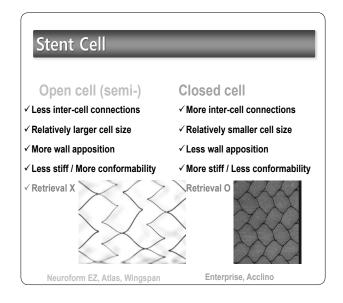
Stent-assisted coiling technique - including stent 종류와 특성

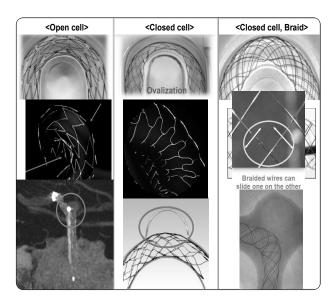

박 근 영 연세대 세브란스병원

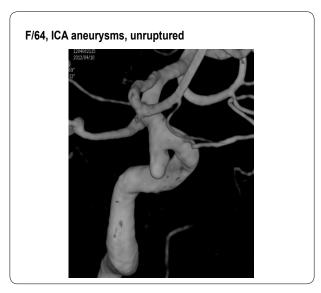


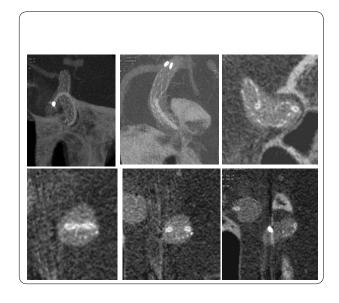


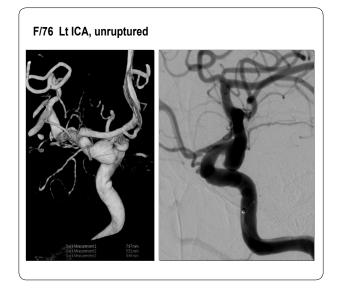

Why or for What?

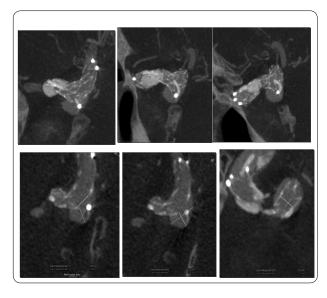

- Scaffold for coil mass
 - Wide-neck and/or shallow, and fusiform aneurysms that are **otherwise NOT coilable**.
- Prevention of recurrence
 - Large/Giant aneurysm
- Re-enforcement of fragile vessel wall
 - Blood blister-like, dissecting or pseudoaneurysm
- Prevention of microcatheter kickback

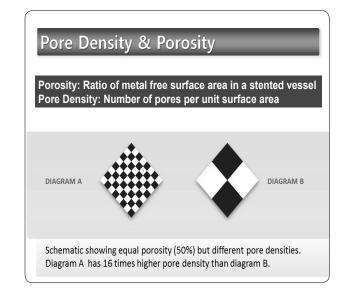


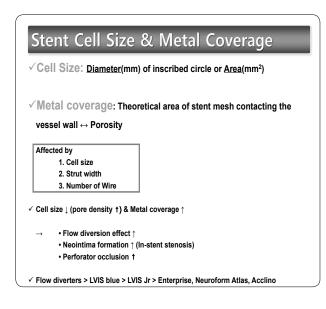


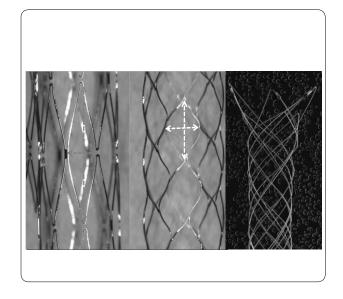


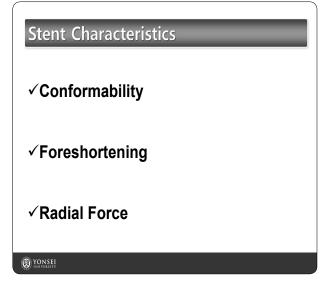


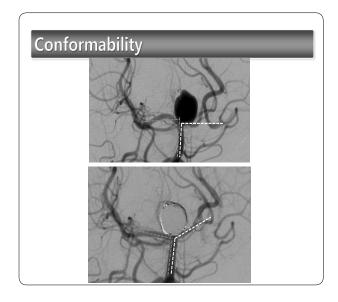


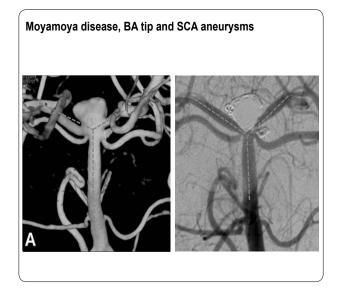


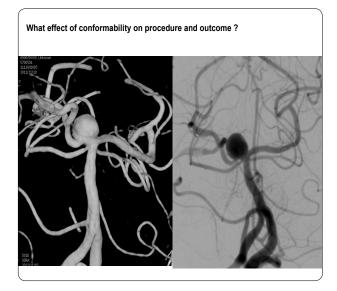


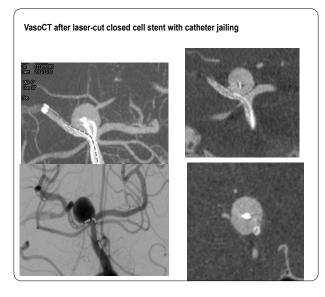


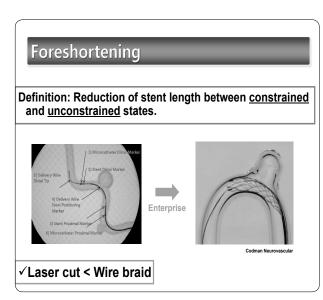

✓ Pore density and Porosity ✓ Cell size and Metal Coverage



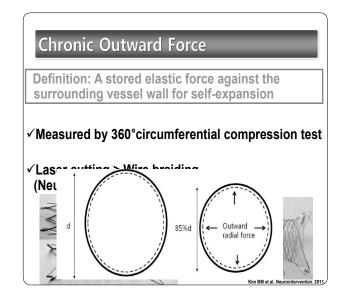


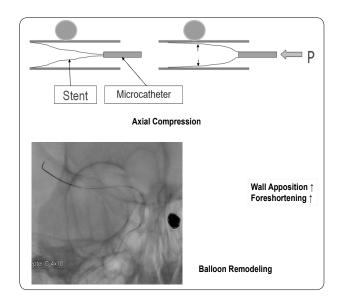

YON SEI

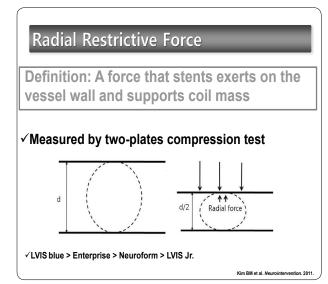


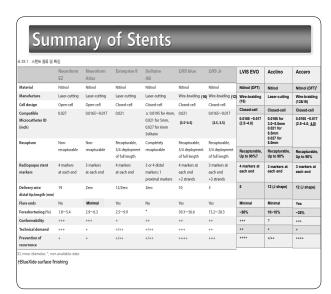


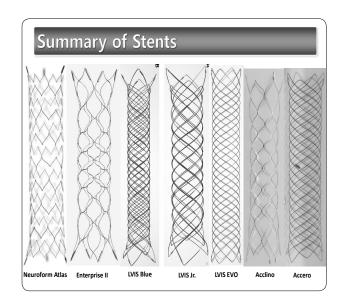


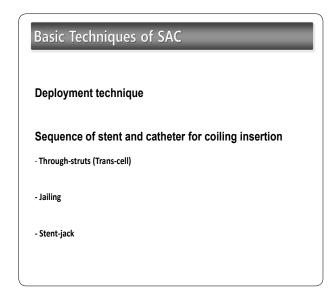


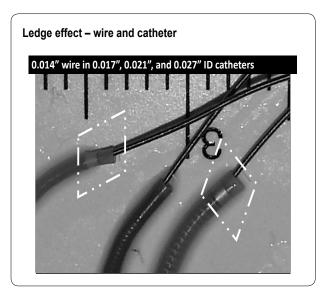


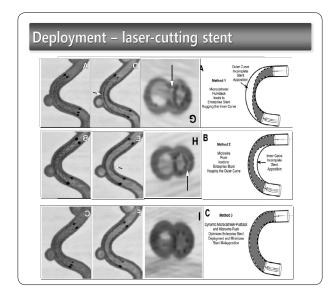


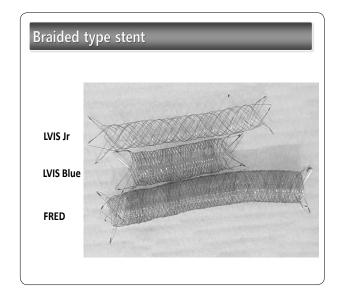


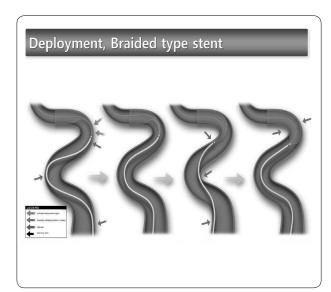


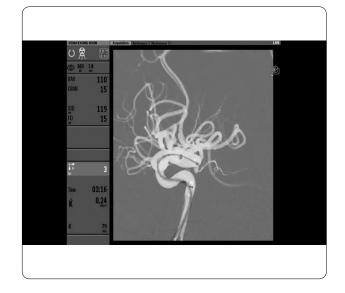


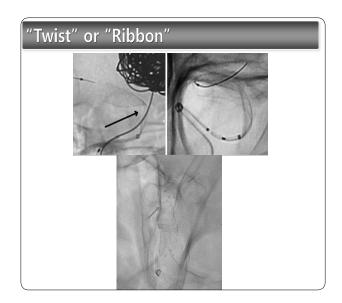




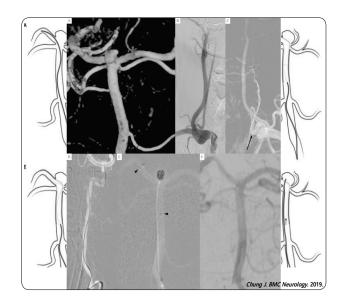








Basic Techniques of SAC

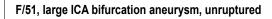

Deployment technique

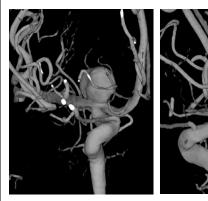
Sequence of stent and catheter for coiling insertion

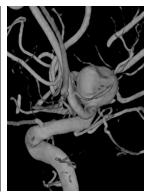
- Through-struts (Trans-cell)

- Jailing

- Stent-jack




Basic Techniques of SAC


Deployment technique

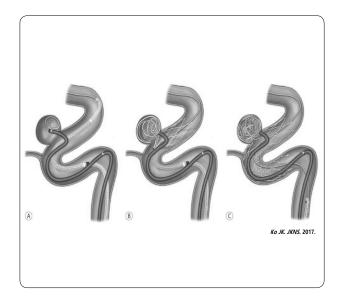
Sequence of stent and catheter for coiling insertion

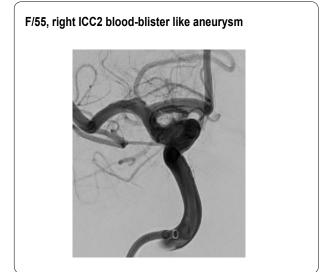
- Through-struts
- Jailing
- Relation of catheter tip to stent
- Semi-jailing or Stent-jack

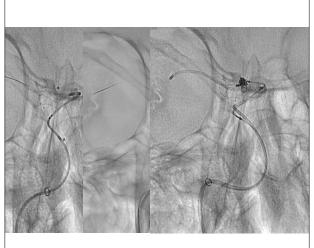
Relation of catheter tip to stent

catheter 1 for coil \rightarrow catheter for stent \rightarrow catheter 2 for coil

Stent placement

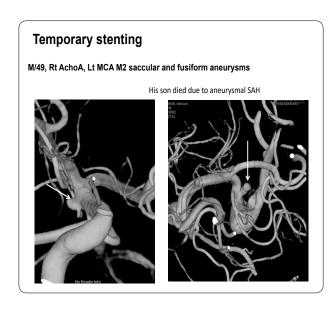


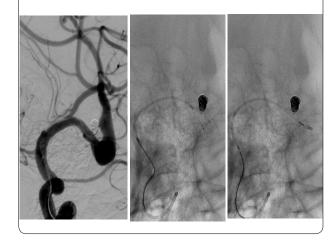

Basic Techniques of SAC


Deployment technique

Sequence of stent and catheter for coiling insertion

- Through-struts
- Jailing
- Semi-jailing or Stent-jack




Advanced Techniques of SAC Temporary Trans-communicating: retrograde Antegrade horizontal Shelf technique Y-configuration: through struts vs. parellel vs. non-overlapping Waffle-cone

Stent + multi-catheter
Balloon-in-stent

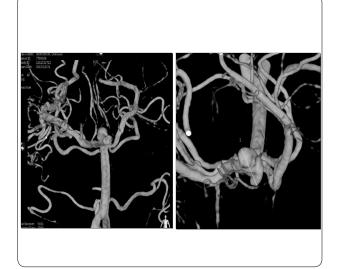
Solitaire AB → resheathing

Advanced Techniques of SAC

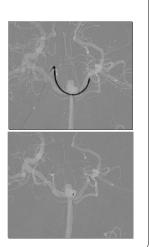
Temporary

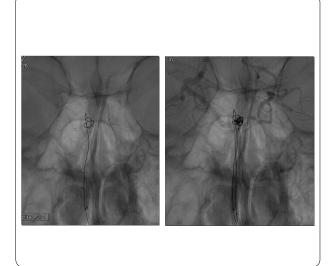
Trans-communicating: retrograde

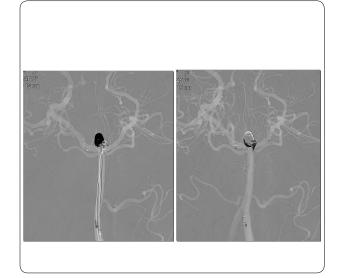
Antegrade horizontal


Shelf technique


Y-configuration: through struts vs. horizontal vs. non-overlapping


Waffle-cone


Stent + multi-catheter


Balloon-in-stent

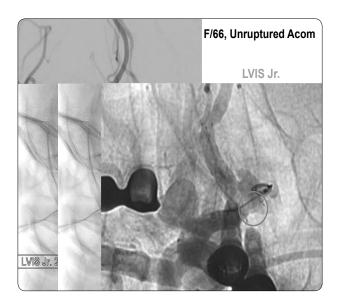
Advanced Techniques of SAC

Temporary

Trans-communicating: retrograde

Antegrade horizontal

Shelf technique


Y-configuration: through struts vs. parellel vs. non-overlapping

Waffle-cone

Stent + multi-catheter

Balloon-in-stent

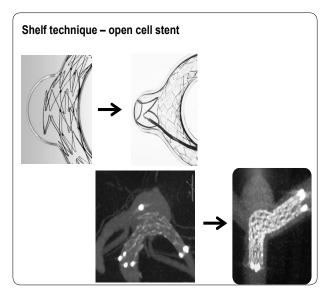
Overlapping stent (stent-within-stent)

Advanced Techniques of SAC

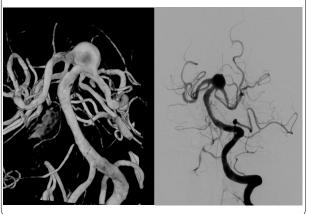
Temporary

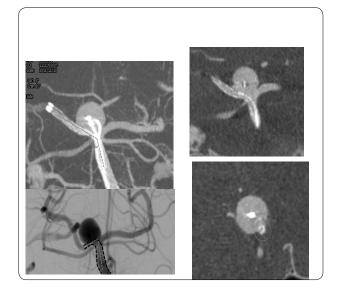
Trans-communicating: retrograde

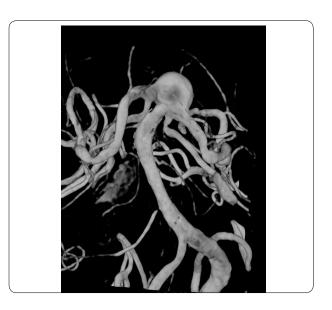
Antegrade horizontal

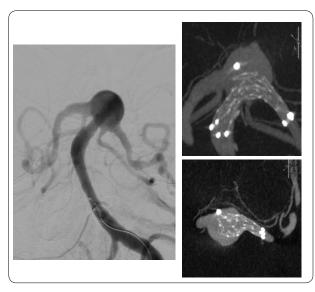

Shelf technique: open-cell or braided stent

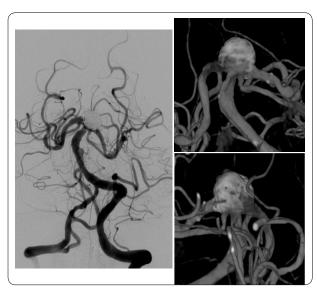
Y-configuration: through struts vs. horizontal vs. non-overlapping

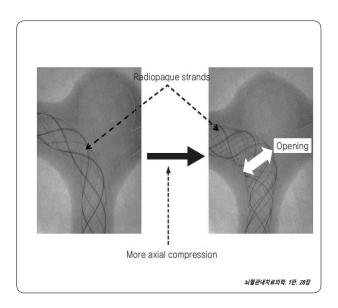

Waffle-cone

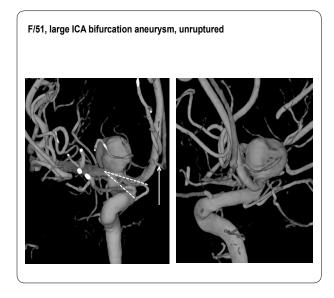

Stent + multi-catheter

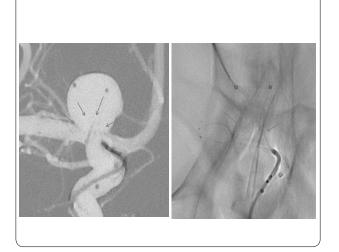

Balloon-in-stent

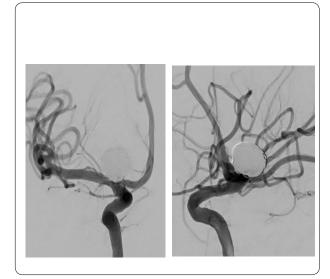



- Poor development of both posterior communicating arteries Hypoplastic Rt VA, tortuous bilateral VA with orifice stenosis
- About 11mm sized large aneurysm (Neck, 11mm, Height 5.5mm, AP x lateral, 10.5 x 9mm)









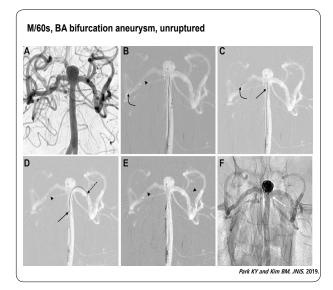
Advanced Techniques of SAC

Temporary

Trans-communicating: retrograde

Antegrade horizontal

Shelf technique


Y-configuration: through struts vs. parallel vs. non-overlapping

Waffle-cone

Stent + multi-catheter

Balloon-in-stent

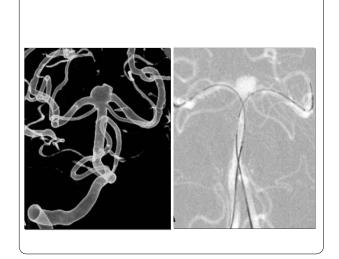
Overlapping stent (stent-within-stent)

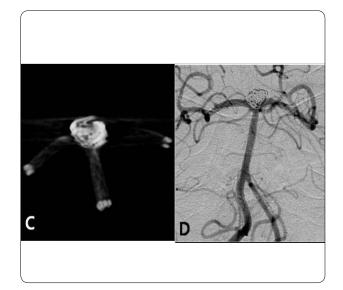
Advanced Techniques of SAC

Temporary

Trans-communicating: retrograde

Antegrade horizontal


Shelf technique


Y-configuration: through struts vs. parallel vs. non-overlapping

Waffle-cone

Stent + multi-catheter

Balloon-in-stent

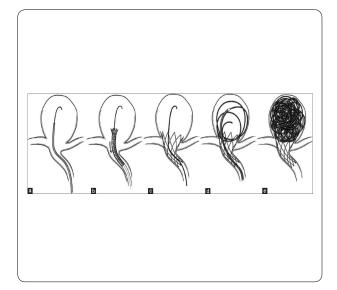
Advanced Techniques of SAC

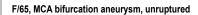
Temporary

Trans-communicating: retrograde

Antegrade horizontal

Shelf technique


Y-configuration: through struts vs. horizontal vs. non-overlapping


Waffle-cone

Stent + multi-catheter

Balloon-in-stent

Overlapping stent (stent-within-stent)

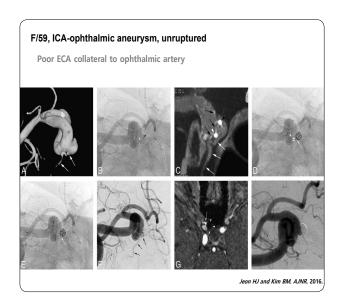
Courtesy of Dr. JUNG, Jin-Young

Advanced Techniques of SAC

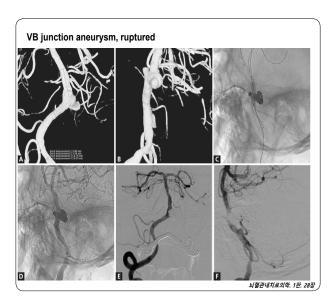
Temporary

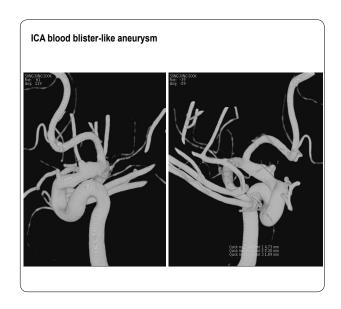
Trans-communicating: retrograde

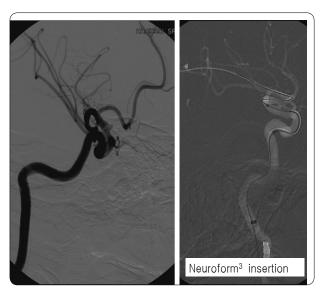
Antegrade horizontal

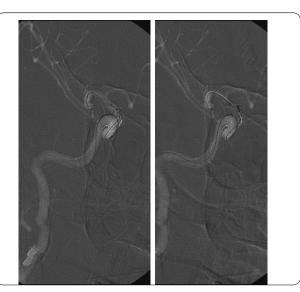

Shelf technique

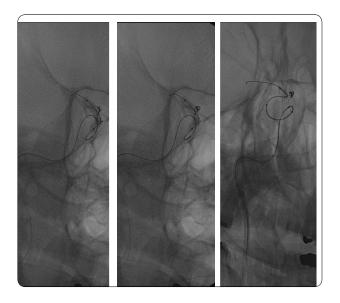
Y-configuration: through struts vs. horizontal vs. non-overlapping


Waffle-cone


Stent + multi-catheter


Balloon-in-stent




Advanced Techniques of SAC Temporary Trans-communicating: retrograde Antegrade horizontal Shelf technique Y-configuration: through struts vs. horizontal vs. non-overlapping Waffle-cone Stent + multi-catheter Balloon-in-stent

Advanced Techniques of SAC

Temporary

Trans-communicating: retrograde

Antegrade horizontal

Shelf technique

Y-configuration: through struts vs. horizontal vs. non-overlapping

Waffle-cone

Stent + multi-catheter

Balloon-in-stent

Overlapping stent (stent-within-stent)

ICA-paraclinoid aneurysm, unruptured

Antiplatelets Preparation

Later can interest an interest can be seen used to be an interest of the carried to the carried

Yamada NK¹, Cross DT 3rd, Piloram TK, Moran CJ, Dardevn CP, Dacev RG-Jr.

Mather information

antiplated drugs before and after embotazion. ERSUITS. Symptomic themboshmobic complications (transient isothemic attack or stroke within 60 days) occurred iff 4 (165 to 22) when antiplated drugs were gleen, inf 2 72 333, to 3 50 when antiplated drugs were production on the complication of the complicat

CONCLUSION: Oral clopidogral and/or aspirin significantly lowered the symptomatic thromboembolic complication rate of elective coll embolization of unroptived cerebral aneurysms. There were trends toward a lower rate of linterprocedural clot formation in patients given ampliquied drugs before procedures and a higher hemorrhagic complication rate in patients given ampliquied drugs before therapy appear to outweigh risks.

Antiplatelets preparation is mandatory, especially in SAC.

Non-responsiveness to Clopidogrel

✓ 5 – 44 % of patients taking clopidogrel

Why & How?

- Initial form: Prodrug
- Only 15% can be metabolized by CYP in the liver
- Factors: Age, Co-morbidities, Co-medications, Genetic polymorphism
- ✓ Various assays to evaluate a platelet response
- ✓ No standardized definition or cut-off value regarding clopidogrel responsiveness
- ✓ Routine evaluation and modification: controversial

Antiplatelets Modification

High incidence of P2Y12 receptor antagonist poor-responder in Asia

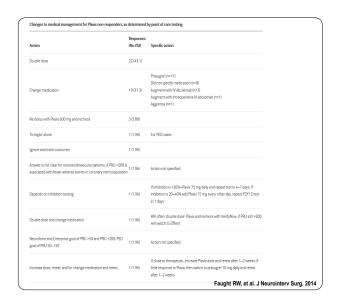
Table 3. Primary and Secondary Outcomes of the Standard and Modified Preparation Groups

Variable	Modified Preparation, No. (%)	Standard Preparation, No. (%)	Crude Risk Difference, % (95% CI)	Adjusted Risk Difference, % (95% CI) ^a	P Valu
Thromboembolic event, d					
≤7	1/63 (1.6)	7/63 (11.1)	-9.5 (-17.9 to -1.2)	-11.7 (-21.3 to -2.0)	.02
≤30 ^b	1/63 (1.6)	7/63 (11.1)	-9.5 (-17.9 to -1.2)	-11.7 (-21.3 to -2.0)	.02
Bleeding event	6/63 (9.5)	4/63 (6.3)	3.2 (-6.2 to -12.6)	5.6 (-4.2 to -15.4)	.26

Hwang G. JAMA Neurol. 2015.

Antiplatelets Modification

- √ How Modification?
- 1. Dose Up
- 2. Triple
- 3. Prasugrel, Ticagrelor


Heterogeneous practice patterns regarding antiplatelet medications for neuroendovascular stenting in the USA: a multicenter survey

 $Ryan\,W\,F\,Faught^{\,1}\,,\,Sudhakar\,R\,Satti^{\,2}\,,\,Robert\,W\,Hurst^{\,3}\,,\,Bryan\,A\,Pukenas^{\,3}\,,\,Michelle\,Janine\,Smith^{\,1}\,,\,Michelle\,Janine\,Smith^{\,2}\,,\,Michelle\,$

Specific point of care assessments utilized

Test	No C6
VenifyNow P2Y12 assay (Accumetrics)	36 (76.6)
VerifyNow ASA Reaction (Accumetrics)	13 (27.7)
"I don't know"	7 (14.9)
Light transmission (Born) aggregometry (LTA)	3 (6.4)
Other*	2 (4.3)
VASP assay (Biocytex and Stago)	0 (0)

Faught RW, et al. J Neurointerv Surg. 2014

Multiple Antiplatelets: How long?

- √Undefined in Neurovascular Field
- ✓ Experience in Coronary

Incidence of cerebral ischemic events after discontinuation of clopidogrel in patients with intracranial aneurysms treated with stent-assisted techniques

Clopidogrel D/C at 6 we Delay Thromboembolic event J Neurosurgery. 2012.

Multiple Antiplatelets: How long?

Onset Time of Ischemic Events and Antiplatelet Therapy after Intracranial Stent-assisted Coil

tsumoto Y¹, Nakai K², Tsutsumi M³, Iko M³, Nii K⁴, Narita S³, Eto A³, Mitsutake T³, Aikawa H³, Kazekawa K³.

Author information

Abstract

BACKGROUND: Stent-assisted coil embolization is effective for intracranial aneuryams, especially wide-necked aneuryams, however
optimal arripitatelet regimens for ischemic events that develop after coil embolization have not yet been established. We aimed to de
the onset time of such postoperative ischemic events and the relationship between these events and antiplatelet therapy;

METHODS: We performed coil embolization using a vascular reconstruction stent for 43 cases of intracranial aneuryams and evalual
incidence of postoperative ischemic events in these cases.

Incidence of postoperative ischemic events in these cases.

RESULTS: Nine patients showed postoperative ischemic events during the follow-up period (13 ± 7 months). Two patients developed carebral infarction within 24 hours. Five patients developed transient inschemic attack within 40 days while they were receiving dual antiplatelet therapy. In addition, 1 patient showed cerebral infarction 143 days postoperatively during single antiplatelet therapy, and a case of transient visual disturbance was reported 194 days postoperatively (44 days after entiplatelet therapy), and a case of transient visual disturbance was reported 194 days postoperatively (44 days after entiplatelet therapy), and a case of transient visual antiplatelet therapy. All these patients were shifted to single antiplatelet therapy. 31 months postoperatively, for recurrence of ischemic events was noted.

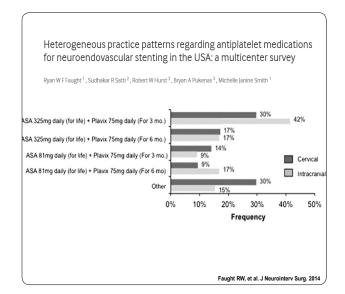
CONCLUSIONS Postoperative ischemic events are most likely to core fulfish 40 days postoperatively. For patients with postoperative ischemic events, additional ischemic events can be prevented by increasing the number of antiplatelet agents; subsequently, they can be shifted to single antiplatelet therapy after the risk of recurrence has decreased.

Multiple Antiplatelets: How long?

Delayed ischemic stroke after stent-assisted coil placement in cerebral aneurysm: characteristics and optimal duration of preventative dual antiplatelet therapy.

ing G¹, Kim JG, Song KS, Lee YJ, Villavicencio JB, Suroto NS, Park NM, Park SJ, Jeong EA, Kwon Ok Author information

Abstract PURPOSE: To evaluate characteristics of delayed ischemic stroke after stent-assisted coil placement in cerebral aneurysms and to dete the optimal duration of dual antiplatelet therapy for its prevention.


MaTERALS AND METHODS: This retrospective study was approved by the institutional review board, and the requirement to obtain writte informed consent was waived. Of 1579 patients with 1661 aneuryams, 395 patients (25.0%) with 403 aneuryams (24.3%) treated with stent-assisted coil placement vere included and assigned to groups stratified as early (126 patients [31.9%]. 3 months of coil placement, inform (160 patients (40.5%), 6 months), or late (109 patients [27.6%); 2 9 months), according to the time points of switching dual antipla therapy to monotherapy from coil placement. Cumulative rates of delayed schemic stroke in each group were calculated by using Kaplan-Maler estimates that were compared with log-rank tests. Risk factors of delayed schemic stroke were identified by using Cox proportional

inazarui aminysis.

RESULTS: Delayed ischemic stroke occurred in 3.5% of all cases (embolism, 3.0%, thrombotic occlusion, 0.5%) within 2 months follow switch. Late switch yielded no delayed ischemic stroke, unlike early (seven of 126 patients [5.6%]; P = .013) or midterm (seven of 150 [4.4%]; P = .028) switch. Incomplete occlusion (hazard ratio, 6.68 [95% confidence interval: 1.490, 29.900]) was identified as a risk fac

CONCLUSION: Delayed ischemic stroke after stent-assisted coil placement is caused by embolism from or thrombotic occlusion of stent-containing vessels after switching from dual antiplatelet therapy to monotherapy. The stent-containing vessel with incomplete aneurysm occlusion presents as a long-term thromboembolic source. Therefore, dual antiplatelet therapy for more than 9 months and late switch to

Bleeding: 1%

Stent-assisted Coiling

Increasing of its usage

- √ Procedure: Simple and Easy
- ✓ Knowledge of stent & antiplatelets ↑↑

Summary

- 1) Stents
- ✓ Laser cutting vs Wire braiding
- ✓ Open cell vs Closed cell
- 2) Basic Techniques of SAC
- ✓ Deployment
- √ Laser cutting vs Wire braiding
- 3) Advanced Techniques of SAC
 - ✓ Various, combined
 - ✓ Low-profile stents

MEMO ///////////////////////////////////

Management of complications - including perioperative rupture, thrombus formation

윤 원 기 고려대 구로병원

COMPLICATION MANAGEMENT IN COIL EMBOLIZATION PROCEDURE

Wonki Yoon, MD, PhD Korea University, Seoul, Korea

CONTENTS

- Access Site Complication
- Intraoperative Aneurysm Rupture
- Thromboembolic Event
 - Prevention
 - Management

ACCESS SITE COMPLICATION

- Minor hematoma > 5%
- Major hematoma requiring surgical therapy < 0.5%
- AVF 0.05%
- Pseudoaneurysm 0.01%
- Vessel thrombosis 0.1%
- Neuritis
- Infection

Primer of Diagnostic Imaging (Fifth Edition) 2011

Groin Hematoma

- Risk factor obesity, anticoagulation, large sheath, premature ambulation, peripheral vascular disease
- Poor hemostatic technique compression on the site of skin incision
- Short duration of compression
- Management additional compression, reversal of anticoagulation

Cardiac Intensive Care (Second Edition), 2010

Retroperitoneal Hematoma

- Diagnosis
 - Challenging high level of suspicion
 - Obesity, uncontrolled hypertension, high femoral puncture, unguided femoral puncture, multiple femoral puncture attempts
 - Signs hypotension, diaphoresis, lower abdominal or back pain, bradycardia, tenderness on abdominal or suprapubic area
 - Within 3hrs of procedure
 - Vascular closure device does not exclude possibility of retroperitoneal hematoma

Femoral artery Pseudoaneurysm

- Cause superficial femoral artery puncture, inadequate hemostasis
- Signs increasing hematoma
- Diagnosis ultrasonography, angiography
- Treatment US guided compression, thrombin injection, Stent, Coil, Surgery

Prevention

- Prevention
 - · Anatomical Knowledge
 - Technique of Access Ultrasound guided, landmark femoral head
 - Hemostasis method
 - · Distal pulsation monitoring

IAR (INTRAOPERATIVE ANEURYSM RUPTURE)

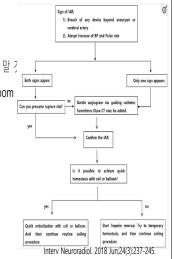
- Frequency 1-5%
- vs. clip
 - Less frequent but poorer prognosis
 - 40% poor outcome

- Factors associated with IAR
 - Microinstrument
 - Microwire / Coil / Microcatheter

- Packing density, Coil oversize
- Smaller aneruysm
- A-com aneurysm
- Use of balloon controversial
- Vascular tortuosity
- Local anesthesia

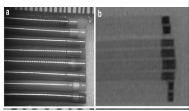
Neurointerv Surg-2017

Am J Neuroradiol 2012; 33: 2017–2021


Stroke 2008; 39: 2776-2782

J Neurointerv Surg 2013; 5: iii56-iii61

Neurosurgery 2011; 68: 731-737


Management • Mindset- 절대로 카테터 빼지 말 ? • Continuing packing - mushroom • Blood Pressure • Proximal Occlusion

- Temporary Balloon occlusion
- Adenosine
- Rapid ventricular pacing
- Protamine sulfate

Prevention of IAR

- Aneurysm Selection
 - Catheter selection vs Wire selection
 - Position of catheter tip
- Coil packing
 - · Size of framing coil
 - Backward pressure
 - · When to stop
 - · Swaying of catheter
 - Back support of catheter

Neuroradiology volume 50, pages423–427 (2008)

TEC (THROMBOEMBOLIC COMPLICATION)

- 2-15%
- · Guiding catheter · Coil mashes
- More frequent than IAR
- · Air embolism
- Atheroma dislodge
- Difficult to detect/ascertain
- · Lack of coaxial fluid
- Hypercoagulable state, vasospasm (ruptured an.)
- · Vigorous analysis of angiography
- · Heparin induced thrombocytopenia Antiphospholipid-antibody syndrome
- Postop. Diffusion MRI
- · Large aneurysm

Prevention

- Systemic heparinization, sufficient coaxial fluid mixed with heparin
- ACT monitoring unresponsive to heparin
- Perioperative antiplatelet
 - Resistance test switch from clopidogrel to ticagrelor or prasugrel , add antiplatelet
- Working angle
- Vascular Anatomy, Reference Image
- Avoidance of Excessive manipulation

Management

- Medical
 - Fibrinolytics (Urokinase, t-PA)
 - Gpllb/Illa receptor antagonist (reopro, tirofiban)
 - Nitroglycerin, nimodipine
- Mechanical
 - Stent
 - Balloon
 - Suction aspiration, Stentriever
- Surgery

MEMO ///////////////////////////////////

MEMO ///////////////////////////////////

Basic NeuroEndovascular Training Course 2

(BNET Course)

인 쇄: 2023년 4월 5일

발 행: 2023년 4월 8일

발행처: 대한뇌혈관내치료의학회

(06631) 서울 서초구 서초대로 350 (서초동, 동아빌라트2타운) 407호

Tel_02-2279-9560 / E-mail_kones@konesonline.or.kr

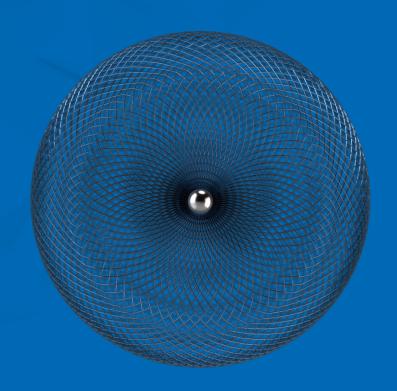
https://www.konesonline.or.kr

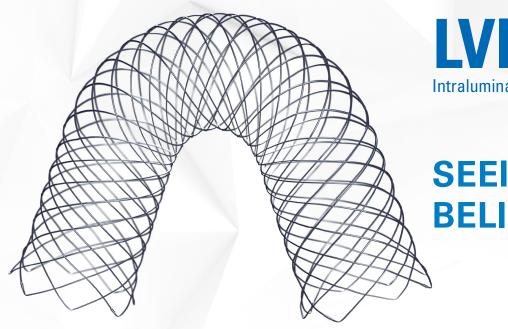
회 장: 장철훈 부회장: 권순찬 총 무: 김영우

수련교육: 김태곤, 박중철

optima[™] coil system

optimal design, optimal detachment




Optima Coil System is manufactured by Balt USA, 29 Parker, Irvine, CA 92618. The Optima Coil System is intended for the endovascular embolization of intracranial aneurysms and other neurovascular abnormalities such as arteriovenous malformations and arteriovenous fistulae. The Optima Coil System is also intended for vascular occlusion of blood vessels within the neurovascular system to permanently obstruct blood flow to an aneurysm or other vascular malformation and for arterial and venous embolizations in the peripheral vasculature. The content of this document, in particular data, information trademarks and logos are BALT S.A.S and affiliates' sole property. Consequently, all representation and/or reproduction, whether in part or in full, is forbidden and would be considered a violation of BALT S.A.S and affiliates of the intellectual proprietary rights © 2018 BALT S.A.S and affiliates all rights reserved. This document with associated pictures are non-contractual and are solely dedicated to healthcare professionals and BALT S.A.S and affiliates' distributors. The products commercialized by BALT S.A.S and affiliates shall exclusively be used in accordance with the package inserts which have been updated and include in the boxes. Optima Coil System is Class III CE marked (DDS CE0297) according to the Medical Device Directive 93/42/EEC Annex II Section 4 since July 2017 (535003 W). (05/2018).

LEADING THE WAY IN INTRASACCULAR FLOW DISRUPTION

LVIS EVO

Intraluminal Support Device

SEEING IS BELIEVING

Indications for Use:

The LVIS EVO device is intended for use with embolic coils for the treatment of intracranial neurovascular diseases.

The WEB Aneurysm Embolization System is intended for the endovascular embolization of ruptured and unruptured intracranial aneurysms and other neurovascular abnormalities such as arteriovenous fistulae (AVF). The WEB Aneurysm Embolization System is also intended for vascular occlusion of blood vessels within the neurovascular system to permanently obstruct blood flow to an aneurysm or other vascular malformation. The device should only be used by physicians who have undergone training in all aspects of the WEB Aneurysm Embolization System procedures as prescribed by Sequent Medical, Inc.

The VIA** Catheter is intended for the introduction of non-liquid interventional devices (such as coils/stents/flow diverters) and infusion of diagnostic (such as contrast media) or non-liquid therapeutic agents into the neuro, peripheral, and coronary vasculature.

For Healthcare Professional Intended Use Only. Please refer to IFU for the full list of risks, contraindications, warnings, and precautions.

RX Only: Federal law restricts this device to sale by or on the order of a physician.

Class III - CF0297

Please note: not all products displayed are available for sale or distribution in all regions

MICROVENTION, EVO and LVIS are registered trademarks of MicroVention, Inc. in the United States and other jurisdictions. WEB and VIA are registered trademarks of Sequent Medical, Inc. © 2022 MicroVention, Inc.