
대한뇌혈관내치료의학회/ 대한뇌혈관외과학회 합동연수교육

(2021 대한뇌혈관내치료의학회 추계보수교육 및 ARCS)

일시 | 2021년 10월 1일(금)

장소 | 판교 차바이오컴플렉스 지하 1층 대강당

평점 | 4점

주최 I 대한뇌혈관내치료의학회, 대한뇌혈관외과학회 주관 I 대한신경외과학연구재단

2020~2021 대한뇌혈관내치료의학회 임원진

명예회장

9419		
직위	성명	소속
마신(+)+1	백민우	인봉의료재단 뉴고려병원
명예회장	권도훈	울산대학교 서울아산병원
회장		
직위	성명	소속
회장	윤석만	순천향대학교 천안병원
부회장	장철훈	영남대학교병원
상임이사	1	
직위	성명	소속
총무	박석규	순천향대학교 서울병원
학술	권순찬	울산대학교병원
정책	신승훈	차의과대학교 분당차병원
재무	김영우	가톨릭대학교 의정부성모병원
수련교육	유승훈	울산대학교 강릉아산병원
구인파퓩	김태곤	차의과대학교 분당차병원
간행	하성곤	고려대학교 안산병원
	권현조	충남대학교병원
보험	정준호	연세대학교 세브란스병원
_	박석규	순천향대학교 서울병원
대외협력	김성림	가톨릭대학교 부천성모병원
국제교류	정진영	연세에스병원
법제윤리	고준경	부산대학교병원
= 발에린트 홍보	신희섭	강동경희대학교병원
<u> </u>	장경술	가톨릭대학교 인천성모병원
전산정보	신동성	
\$1017171		순천향대학교 부천병원
회원관리	장인복	한림대학교 평촌성심병원
진료지침	남택균	중앙대학교병원
01	최재형	동아대학교병원
연보·학회사편찬	임용철	아주대학교병원
진료심의	박중철	울산대학교 서울아산병원
전문병원	김문철	에스포항병원
	허준	명지성모병원
학술지편집	김대원	원광대학교병원
인증관리	이호국	한림대학교 강남성심병원
다기관임상	김범태	순천향대학교 부천병원
미래전략	권오기	분당서울대학교병원
국제학술대회	신용삼	가톨릭대학교 서울성모병원
의학회	장철 훈	영남대학교병원
여의사위원회	심숙영	인제대학교 서울백병원
심뇌혈관질환정책	윤창환	분당서울대학교병원 순환기내과
뇌신경마취	전영태	분당서울대학교병원 마취통증의학과
의료기기연구	양수근	인하대학교 의과대학 의생명학과
되신경재활 기신경재활	김수아	순천향대학교 천안병원 재활의학과
다학제연구	이학승	원광대학교병원 신경과
다학제연구	정용안	가톨릭대학교 인천성모병원 핵의학과
 다학제연구	이아름	건물럭데럭교 한잔영포경권 액기럭퍼 순천향대학교 부천병원 영상의학과
광주/전라지회	김태선	전남대학교병원
대구/경북지회	장철훈 기청조	영남대학교병원
대전/충청지회	권현조	충남대학교병원
부산/울산/경남지회	정진영	연세에스병원
<u></u> 인천지회	현동근	인하대학교병원
감사	고정호	단국대학교병원
	이종영	한림대학교 강동성심병원
간사	오재상	순천향대학교 천안병원

2020~2021 대한뇌혈관내치료의학회 임원진

전임회장단

직위	성명	소속
초대, 제2대	백민우	인봉의료재단 뉴고려병원
제3대	김영준	단국대학교병원
제4, 5대	권도훈	울산대학교 서울아산병원
제6대	안성기(작고)	(전) 한림대학교 성심병원
제7대	신용삼	가톨릭대학교 서울성모병원
제8대	권오기	분당서울대학교병원
제9대	김범태	순천향대학교 부천병원
제10대	성재훈	가톨릭대학교 성빈센트병원
제11대	고준석	강동경희대학교병원

2021년도 대한뇌혈관외과학회 임원진

실행이사회

결성이시되		
직위	성명	소속
회장	김태선	전남대병원
부회장	임동준	고려대 안산병원
총무 이사	최석근	경희대병원
학술 이사	이상원	양산부산대병원
간행 이사	김대원	원광대병원
기획홍보 이사	유찬종	가천대 길병원
역사편찬 이사	남택균	중앙대병원
교과서편찬 이사	김태곤	차의과학대 분당차병원
정보통계 이사	정승영	을지대병원
회칙개정 이사	이관성	가톨릭대 서울성모병원
	박석규	순천향대 서울병원
보험진료 이사	권현조	충남대병원
	정준호	연세대 세브란스병원
회원관리 이사	정진환	한양대 구리병원
수련교육 이사	주성필	전남대병원
국제교류	손영제	보라매병원
재무 이사	박동혁	고려대 안암병원
정도관리 이사	방재승	분당서울대병원
다기관 임상시험	조원상	서울대병원
법제윤리	심숙영	인제대 서울백병원
의료정책	이종영	한림대 강동성심병원
의료판례	이철희	경상대병원
대외협력	심유식	인하대병원
혈관내수술	윤석만	순천향대 천안병원
급성 뇌경색	최재형	동아대병원
두개저외과	윤원기	고려대 구로병원
방사선수술	임용철	아주대병원
뇌혈관문합연구회	하성곤	고려대 안산병원
뇌혈관해부연구회	이철영	건양대병원
경동맥연구회	이성호	서울대병원
인증제도연구회	최찬영	인제대 일산백병원
여의사 분과	박문선	을지대병원
소책자 발간	박중철	울산대 서울아산병원
	한영민	나은병원
전문병원	김문철	에스포항병원
	허 준	명지성모병원
간사	최규선	한양대병원
7 F.1L	임준섭	광주기독병원
감사	김영돈	대구가톨릭대학병원
	1	

상임이사

성명	소속
김종수	성균관대 삼성서울병원
고현송	충남대병원
김태선	전남대병원
임동준	고려대 안산병원
박익성	가톨릭대 부천성모병원
안재성	울산대 서울아산병원
박재찬	경북대병원
신 용 삼	가톨릭대 서울성모병원
권오기	분당서울대병원
성재훈	가톨릭대 성빈센트병원
이재환	연세대 용인세브란스병원
김정은	서울대병원
김용배	연세대 세브란스병원
이상원	양산부산대병원
최석근	경희대병원

전임회장단

성명	소속
홍승철	성균관대 삼성서울병원
주진양	연세대 강남세브란스병원
강성돈	원광대병원
김재민	한양대 구리병원
허필우	허필우신경외과의원
오창완	분당서울대병원
박현선	인하대병원
박인성	창원한마음병원
정영균	인제대 부산백병원
김종수	성균관대 삼성서울병원
고현송	충남대병원

명예회장단

0	
성명	소속
김광명	전)한양의대
김국기	전)경희의대
김달수	전)가톨릭의대-명지성모병원
김승래	전)경북의대
이제혁	전)전남의대
한대희	전)서울의대
이동열	전)침례병원-현대요양병원
최병연	전)영남의대-제주한라병원
권병덕	전)울산의대-강릉아산병원
허승곤	전)연세의대
김한규	차의과학대 분당차병원
나형균	전)가톨릭의대

인사말

존경하는 대한뇌혈관내치료의학회 및 대한뇌혈관외과학회, 급성뇌경색치료연구회 회원 여러분!

기나긴 코로나 감염병의 터널 속에서 고군분투하고 계신 여러 회원님들께 경의를 표하며, 2021 KSCVS/KoNES 및 KoNES 추계보수교육 (ARCS)을 안내하고자 합니다. 최근 몇 년간 Ischemic stroke 환자의 증가와 새로운 연구내용이 발표되어이에 대한 재정리를 하고 여러 회원님들과 공유하기 위해 이번 연수교육에서는 "Reestablishment of Ischemic Stroke"라는 테마로 국내 유수병원의 각 분야 전문가들을 모시고 연수교육을 진행하고자합니다.

이번 연수교육 통해 신경외과 의사로서 Ischemic stroke 에 접근하는 여러 방법을 공유하는 좋은 기회가 될 것으로 기대하고 있습니다.

아무쪼록 무더운 여름이 끝나고 선선한 바람이 부는 10월 1일 학회장에서 건강한 모습으로 뵙길 기대하면서, 2021 KCVS/KoNES 합동연수교육 및 KoNES 추계보수 교육 (ARCS)에 여러 회원님들을 초대합니다.

감사합니다.

대한뇌혈관내치료의학회 회장 윤 석 만 급성뇌경색치료연구회 (ASTRO) 회장 신 승 훈

인사말

회원 여러분 안녕하셨습니까?

코로나 팬더믹으로 인한 거리두기의 수위가 점점 높아지고 비관적인 여론이 많음에도 불구하고, 이번 합동 연수교육을 준비해 주신 대한 뇌혈관내 치료의학회 윤석만 회장님을 비롯한 집행진분들께 먼저 감사를 드립니다. 아무리 코로나 팬더믹이더라도 저희의학구열은 결코 줄어들지 않을 것입니다.

3개의 session으로 구성된 이번 합동연수교육은 허혈성 뇌혈관질환에 대하여 최신 지견 및 전문가들의 경험을 서로 공유하고 토론하는 좋은 장이 될 것 같습니다. 또 연자분들 중에는 능력있고 혈기넘치는 젊은 교수님들이 많이 보입니다. 저희 학회가 점점 젊어지고 자연스러운 세대교체의 좋은 징후라 생각됩니다.

아무쪼록 코로나 시기에 건강 조심하시고 자주 만나서 지식을 공유하고 토론하는 기회가 많이 있기를 바랍니다.

감사합니다.

대한뇌혈관외과학회 회장 김 태 선

프로그램

대한뇌혈관내치료의학회/ 대한뇌혈관외과학회 합동연수교육

(2021 대한뇌혈관내치료의학회 추계보수교육 및 ARCS)

일 시 | 2021년 10월 1일(금) 장 소 | 판교 차바이오컴플렉스 지하 1층 대강당

09:30-10:20	Registration		
10:20-10:30	Opening Remark	윤석만 (대한뇌혈관내치료의학회 회장) 김태선 (대한뇌혈관외과학회 회장)	
10:30-11:50	Session 1. Ischemic stroke etiology	좌장 : 고현송(충남대), 고준석(경희대)	
10:30-10:50	TOAST classification and its connection to LVO / IAT	곽동석 (경북대병원 신경과)	16
10:50-11:10	AF and Cardioembolic stroke	송여정 (해운대백병원 순환기내과)	26
11:10-11:30	Cardioembolic stroke 1: Overview and intra-IAT / post-IAT care	장준영 (서울아산병원 신경과)	32
11:30-11:50	Cardioembolic stroke 2: IAT	신동성 (순천향대 부천병원)	45
11:50-13:00	Lunch break		
13:00-14:15	Session 2. Carotid revascularization strategy	좌장 : 김태선(전남대), 윤석만(순천향대)	
13:00-13:25	Carotid endarterectomy	김용배 (연세대 세브란스병원)	50
13:25-13:50	EC-IC Bypass	윤원기 (고려대 구로병원)	59
13:50-14:15	Carotid stenting	이동훈 (가톨릭대 성빈센트병원)	60
14:15-14:30	Coffee Break		
14:30-16:00	Session 3. Expert experience for special situations in LVO	좌장 : 임동준(고려대), 장철훈(영남대)	
	Medium Vessel Occlusions		
14:30-14:45	Medium vessel occlusions	정영진 (영남대병원)	80
14:45-15:00	Medium vessel occlusions	하상우 (조선대병원)	90
	LVO with underlying Intracranial arterial stenosis		
15:00-15:15	LVO with underlying Intracranial arterial stenosis	홍대영 (에스포항병원)	95
15:15-15:30	LVO with underlying Intracranial arterial stenosis	양구현 (울산대 강릉이산병원) 1	14
	Acute tandem EC and IC occlusions		
15:30-15:45	Acute tandem EC and IC occlusions	박정현 (한림대 동탄성심병원) 1	15
15:45-16:00	Acute tandem EC and IC occlusions	조용환 (동아대병원) 1	18
16:00	Closing Remark	신승훈 (급성뇌경색치료연구회 회장)	

초청연자

곽 동 석 경북대학교병원 신경과 임상조교수

Education

2004 - 2010서울대학교 의과대학 의학사2013 - 2015서울대학교 의과대학원 의학석사

2018 – 현재 서울대학교 의과대학원 의학박사과정 수료

Professional Experience

2010. 3 - 2011. 2 서울대학교병원 수련의

2011. 3 - 2015. 2 서울대학교병원 신경과 전공의

2018. 5 - 2019. 5 분당서울대학교병원 신경과 임상강사 (뇌졸중. 신경집중치료)

2019. 3 - 2020. 2 경북대학교병원 신경과 임상강사 (뇌졸중, 신경집중치료)

2020. 2 - 현재 경북대학교병원 신경과 임상조교수 (뇌졸중, 신경집중치료)

Membership

대한신경과학회

대한뇌졸중학회

대한신경집중치료학회

American stroke association

World stroke organization 회원

초청연자

송 여 정 인제대학교 해운대백병원 심장내과 조교수

Education

부산대학교 의과대학 학사 졸업 인제대학교 의과대학 석사 졸업

Professional Experience

부산카톨릭의료원 메리놀병원 인턴, 레지던트 인제대학교 부산백병원 임상강사 김해중앙병원 심장내과 과장 울산대학교 강릉이산병원 임상조교수 현) 인제대학교 해운대백병원 심장내과 조교수

Membership

대한 내과학회 정회원

대한 심장학회 정회원

대한 심부전학회 정회원

대한 부정맥학회 정회원

대한 고혈압학회 정회원

한국 심초음파학회 정회원

대한 심혈관중재시술학회 정회원

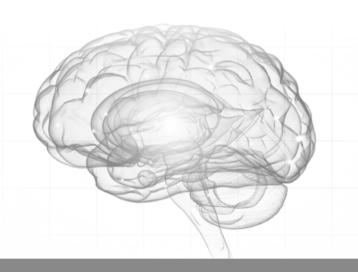
초청연자

장 준 영 울산대학교 서울이산병원 신경과

Education

1999. 3 – 2005. 2	M.D. Seoul National University College of Medicine
2008. 3 - 2010. 2	M.S. Seoul National University
	(specialty: interdisciplinary program in neuroscience)
2016. 9 - 2020. 8	Ph.D. Seoul National University graduate school of Medicine
	(specialty: translational medicine)

Professional Experience


2005. 3 - 2006. 2 2006. 3 - 2010. 2 2010. 3 - 2013. 4	Intern, Seoul National University Hospital, Seoul, South Korea Resident, Seoul National University Hospital (specialty: neurology) Public Health Doctor (Obligation to male doctors in Korea) Department of Neurology, Chilgok Geriatric Hospital
2013. 5 – 2014. 2	Clinical Fellow, Department of Critical Care Medicine, Seoul National University BunDang Hospital (specialty: neurocritical care)
2014. 3 – 2015. 2	Clinical Fellow, Department of Neurosurgery, Seoul National University BunDang Hospital (specialty: neurointervention)
2015. 3 – 2016. 2	Clinical Fellow, Department of Neurology, Seoul National University BunDang Hospital (specialty: stroke)
2016. 3 – 2017. 8	Clinical Assistant Professor, Department of Neurology, Gyeongsang National University Changwon Hospital
2017. 9 – 2018. 2	Assistant Professor, Gyeongsang National University School of Medicine, Department of Neurology
2018. 3 – 2021. 2	Clinical Assistant Professor, Department of Neurology, Asan Medical Center
2021. 3 - Present	Associate Professor, Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine

Membership

2006 –	Member of the Korean Neurological Association
2013 -	Member of the Korean Society of Critical Care Medicine
2013 -	Member of the Korean Neurocritical Care Society
2017 -	Member of Neurocritical Care Society
2017 -	Associate editor of the Journal of Neurocritical Care
2018 - 2019	A member of the academic committee of the Korean Stroke Society
2018 -	A Secretary of the general committee of the Korean Stroke Society

대한뇌혈관내치료의학회/ 대한뇌혈관외과학회 합동연수교육

(2021 대한뇌혈관내치료의학회 추계보수교육 및 ARCS)

Session 1. Ischemic stroke etiology

좌장: 고현송(충남대), 고준석(경희대)

1. TOAST classification and its connection to LVO / IAT $\,$

곽동석(경북대병원 신경과)

2. AF and Cardioembolic stroke

송여정(해운대백병원 순환기내과)

3. Cardioembolic stroke 1: Overview and intra-IAT / post-IAT care 장준영(서울아산병원 신경과)

4. Cardioembolic stroke 2: IAT 신동성(순천향대 부천병원)

TOAST classification and its connection to LVO / IAT

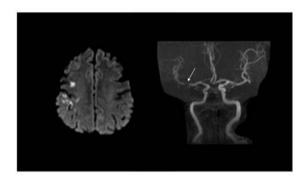
곽동석

경북대병원 신경과

Contents

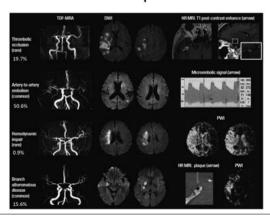
- TOAST Classification
- · Modifications of the TOAST classification
- Endovascular considerations for LVO
 - · ICAD occlusion vs embolic occlusion

Classification of ischemic stroke

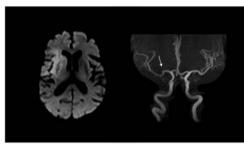

- Ischemic stroke is a heterogeneous neurological disorder.
- Its functional outcome, recurrence, and strategies for secondary prevention differ by subtype.
- To institute adequate treatment as rapidly as possible and to enable robust research in these areas, accurate classification of different stroke syndromes into homogenous subgroups is important.

TOAST Classification (Trials of Org 10172 in Acute Stroke Treatment)

Subtype Large-artery atherosclerosis (embolus/thrombosis) Cardioembolism (high-risk / medium risk) Small-vessel occlusion (lacune) Stroke of other determined etiology Stroke of undetermined etiology a. Two or more causes identified b. Negative evaluation c. Incomplete evaluation

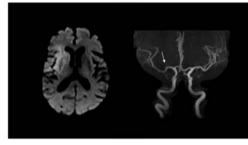

Stroke, 1993 Jan; 24(1):35-

Large-artery atherosclerosis

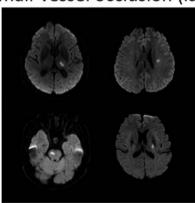

- Cortical/cerebellar lesions
- Brainstem/subcortical lesions > 1.5 cm
- Significant (>50%) stenosis or occlusion of relevant artery due to atherosclerosis
- Clinical findings
 - Cortical symptoms
 - Brainstem sign
 - Cerebellar dysfunction
 - Prior Hx of TIA
 - · Carotid bruit
- Exclude sources of cardiogenic embolism

Stroke mechanisms in patients with LAA

J Stroke 2014;16:27. Stroke 2012;43:3313.


Cardioembolism

- Multiple vascular territory, h/o TIA, systemic embolism
 Embolic source w/u: EKG, TTE, 24h holter, etc.

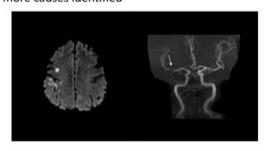

High-risk source	Medium-risk source
Mechanical prosthetic valve	Mitral valve prolapse
Mitral stenosis with AF	Mitral annulus calcification
AF (other than lone AF)	MS without AF
LAA thrombus	LA turbulence (smoke)
Sick sinus syndrome	Atrial septal aneurysm
Recent MI (<4 weeks)	PFO
LV thrombus	Atrial flutter
Dilated cardiomyopathy	Lone AF
Akinetic left ventricular segment	Bioprosthetic cardiac valve
Atrial myxoma	Nonbacterial thrombotic endocarditis
Infective endocarditis	Congestive heart failure
	Hypokinetic left ventricular segment
	MI >4 weeks, <6 months

Cardioembolism: modified

High-risk source	Medium-risk source
Mechanical prosthetic valve	Mitral valve prolapse
Mitral stenosis with AF	Mitral annulus calcification
AF (other than lone AF)	MS without AF
LAA thrombus	LA turbulence (smoke)
Sick sinus syndrome	Atrial septal aneurysm
Recent MI (<4 weeks)	PFO
LV thrombus 4-	Atrial flutter
Dilated cardiomyopathy +	Bioprosthetic cardiac valve
Akinetic left ventricular segment «	Nonbacterial thrombotic endocarditis
Atrial myxoma 4-	Congestive heart failure, EF <30%
Infective endocarditis	Hypokinetic left ventricular segment
Papillary fibroelastoma 4-	Chronic MI with EF <28%
Rheumatic mitral or aortic valve disease	Mitral annulus calcification
	Ventricular aneurysm without thrombus
	Complex atheroma in ascending or proximal aortic arch

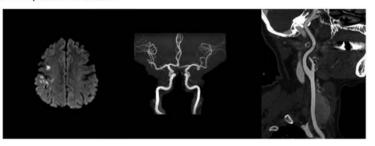
Small-vessel occlusion (lacune)

- Subcortical/brainstem lesions < 1.5 cm
- · No cortical dysfunction
- Cardioembolic source (-) relevant artery stenosis (-)

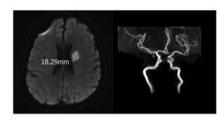

Stroke of other determined etiology Vasculopathy Hematologic cause a. Noninflammatory v a. Disorders of coagulation arterial dissection protein C / S deficiency fibromuscular dysplasia Antiphospholipid antibody syndrome b. Red cell disorder reversible cerebral vasoconstriction syndrome (RCVS) sickle cell anemia radiation-induced vasculopathy polycythemia vera Moyamoya disease c. Platelet disorder hereditary disease - homocysteinuria, Fabry disease, CADASIL. etc. essential thrombocytosis b. Inflammatory vasculopathy isolated anglitis of CNS Miscellaneous unusual cause gaint cell arteritis MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like collagen vascular disease – polyarteritis nodosa, Churg-Strauss syndrome, SLE atypical embolism – fat, air, tumor, cholesterol infectious arteriopathy – syphilis, Tbs, AIDS, bacterial/viral/fungal infection cerebral venous thrombosis

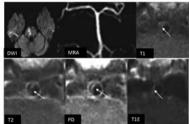
Stroke of undetermined etiology

· Two or more causes identified


toxic-related arteriopathy - amphetamine, cocaine, LSD, heroin

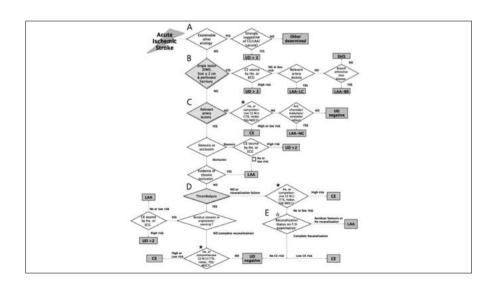
neoplasm-related arteriopathy




Stroke of undetermined etiology

- · Negative evaluation
- Incomplete evaluation

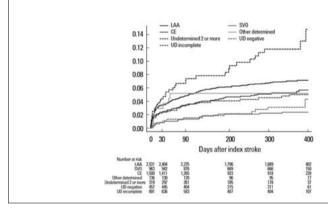
Limitations of TOAST classification


• Undetermined etiology ↑: 25-39%

Cerebrovasc Dis 2016:41:87-95 Cerebrovasc Dis 2009; 27:493-501

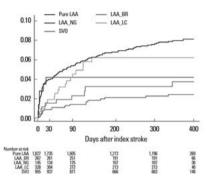
MRI-based Algorithm for classification

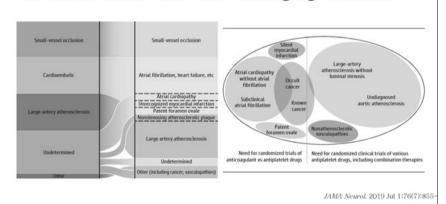
- · Recanalization status after thrombolytic therapy
- Follow-up recanalization status without thrombolytic therapy
- SVO: a single lesion with the largest diameter of ≤20 mm
- · Relevant artery stenosis or occlusion
 - LAA-LC (large artery atherosclerosis with lacune)
 - LAA-BR (large artery atherosclerosis branch atheromatous disease)
 - LAA-NG (large artery atherosclerosis with normal angiography): AChA, single territory of cerebellum, medulla oblongata
 - Stenosis < 50% was also regarded as being relevant when clinical syndromes, lesions patterns on DWI, and new imaging techniques such as high-resolution wall imaging supported its relevance.


J Stroke, 2014 Sep:16(3):161-7

Stroke subtype: Baseline characteristics

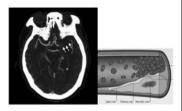
	LAA	SVO	CE	00	UD two or more	UD negative	UD incomplete	Pvalue
Number of patients	2,541 (38.3)	964 (14.6)	1,508 (22.8)	138 (2.1)	320 (4.8)	457 (6.9)	696 (10.5)	
Male	1,563 (61.5)	599 (62.1)	792 (52.5)	81 (58.7)	183 (57.2)	297 (65.0)	404 (58.0)	< 0.001
Age (years), mean ± SD	67.7±12.2	64.0±12.4	71.9±11.6	52.4±16.4	72.4±11.0	65.2±13.0	69.4±12.6	< 0.001
FAT to arrival (h), median (IOR)	12 (3-43)	14(4-41)	3(1-11)	11 (1-48)	5 (1-25)	6 (1-36)	7 (2-33)	< 0.001
Initial NIHSS, median (IOR)	4(2-7)	2 (1-4)	8(2-15)	2(1-6)	5(2-12)	3(1-7)	5 (2-12)	< 0.001
Previous mRS								< 0.001
0	1,998 (78.6)	808 (83.8)	1,159 (76.9)	110(79.7)	245 (76.6)	389 (85.1)	513 (73.7)	
1-5	543 (21.4)	156 (16.2)	349 (23.1)	28 (20.3)	75 (23.4)	68 (14.9)	183 (26.3)	
History of strake	575 (22.6)	152 (15.8)	355 (23.5)	31 (22.5)	87 (27.2)	77 (16.8)	127 (18.2)	< 0.001
Hypertension	1,790 (70.4)	628 (65.1)	1,034 (68.6)	69 (50.0)	248 (77.5)	266 (58.2)	428 (61.5)	< 0.001
Diabetes mellitus	975 (38.4)	322 (33.4)	439 (29.1)	22 (15.9)	105 (32:8)	111 (24.3)	196 (28.2)	< 0.001
Hyperlipidemia	865 (34.0)	307 (31.8)	419 (27.8)	26 (18.8)	87 (27.2)	163 (35.7)	160 (23.0)	< 0.001
Coronary artery disease	172 (6.8)	50 (5.2)	180 (11.9)	4(2.9)	43 (13.4)	38 (8.3)	47 (5.8)	< 0.001
Current smoking	1,070 (42.1)	455 (47.2)	461 (30.6)	53 (38.4)	107 (33.4)	195 (42.7)	269 (38.6)	< 0.001
Atrial fibrillation	10 (0.4)	1 (0.1)	1175 (77.9)	1 (0.7)	265 (82.8)	0 (0)	20 (2.9)	< 0.001
Total cholesterol (mg/dL), mean ± SD	200.1±131.5	191.4±95.3	183.2 ± 127.1	221.5±209.8	189.4±127.9	192.0±115.2	199.3±141.0	< 0.001
FBS (mg/dL), mean ± SD	163.3±190.9	149.6±171.7	176.3±217.7	178.0±234.6	170.7±207.0	147.6±181.3	160.7±171.2	0.014
SBP (mmHq), mean ± SD	141.7±31.5	154.8±29.4	143.2±34.2	139.3±22.2	147.7±28.1	144.6±26.0	144.1±41.5	< 0.001
DBP (mmHg), mean ± SD	85.2±23.7	905±17.2	845±288	81.8±13.5	85.6±18.0	853±151	84.6±37.9	< 0.001
Thrombolysis								< 0.001
N	188 (7.4)	49 (5.1)	241 (16.0)	8(5.8)	47 (14.7)	46 (10.1)	67 (9.6)	
IA .	64 (2.5)	0.400	81 (5.4)	1 (0.7)	11 (3.4)	15 (3.3)	11 (1.6)	
IV4IA	61 (2.4)	0 (0)	136 (9.0)	4(2.9)	13(4.1)	26 (5.7)	23 (3.3)	


Stroke subtype: Recurrent stroke


Special categories of MAGIC: Baseline characteristics

	Pure-LAA n=1,837	LAA-LC n=328	LAA-BR n=267	LAA-NG n=145	SV0 n=956	P-value .
Male	1,158 (63.0)	183 (55.8)	134 (50.2)	109 (75.2)	594 (62.1)	< 0.001*
Age (years), mean ± SD	68.2±12.2	68.6 ± 12.2	67.0±10.8	61.3±12.7	63.9±12.7	< 0.001*
FAT to arrival (h), median (IQR)	10 (2-46)	15 (4-39)	17 (5-41)	15 (4-45)	14 (4-40)	< 0.001*
Initial NIHSS, median (IQR)	4 (2-8)	3 (1-5)	3 (2-5)	2(1-4)	2 (1-4)	< 0.0014
History of stroke	428 (23.3)	81 (24.7)	52 (19.5)	19 (13.1)	150 (15.7)	< 0.001*
Coronary artery disease	133 (7.2)	18 (5.5)	14 (5.2)	8 (5.5)	50 (5.2)	< 0.001*
Hypertension	1278 (69.6)	254 (77.4)	187 (70.0)	95 (65.5)	624 (65.3)	< 0.001*
Diabetes mellitus	668 (36.4)	140 (42.7)	120 (44.9)	57 (39.3)	321 (33.6)	< 0.001*
Hyperlipidemia	640 (34.8)	107 (32.6)	84 (31.5)	42 (29.0)	305 (31.9)	< 0.001*
Current smoking	809 (44.0)	115 (35.1)	86 (32.2)	74 (51.0)	452 (47.3)	< 0.001*
Thrombolysis						< 0.001*
TV .	152 (8.3)	14 (4.3)	18 (6.7)	6 (4.1)	49 (5.1)	
IA.	58 (3.2)	5 (1.5)	0 (0)	1 (0.7)	0 (0)	
IV+IA	60 (3.3)	5 (1.5)	0 (0)	0 (0)	0 (0)	

Special categories of MAGIC: Recurrent stroke


Reclassification based on emerging evidence

Endovascular considerations for LVO : Intracranial atherosclerosis vs Embolism

- Stent retriever or direct aspiration system primarily designed for recanalization of the occluded artery by removing embolus.
- Recanalization may not be sufficiently achieved if a significant atherosclerotic stenosis is present at the occlusion site.
- · ICAS occlusion: frequent in Asian countries

	MCA M1 occlusion (n=78)	ICA T occlusion (n=54)	Vertebrobasilar occlusion (n=25)
Atherosclerotic	18 (23)	3 (6)	10 (40)
Embolic	58 (74)	44 (81)	13 (52)
Dissection	1 (1)	1 (2)	1 (4)
Undetermined	1 (1)	6 (11)	1 (4)

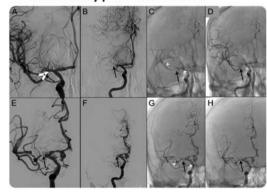
J Stroke. 2017;19(2):143-151.

Surrogate markers suggested of ICAD occlusion : Before starting IAT

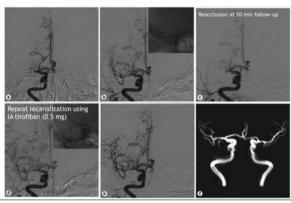
	ICAS-0	EMB-0
Clinical factors		
Younger age	++	+
Male gender	++	+
More severe initial severity	+	++
Relative frequency in vertebrobasilar bed	++	++
Relative frequency in MCA M1	+	+++
Relative frequency in ICA T	±	+++
Higher total cholesterol level	+	±
Smoking	++	+
Atrial fibrillation	±	++++

Surrogate markers suggested of ICAD occlusion : Before starting IAT

Imaging factors	ICAD-Occlusion	Embolic occlusion
Clot sign on GRE	+	***
Hyperdense artery sign on CT	*	**
Smaller baseline DWI lesion volume	++	+
Large territorial infarct pattern	+	***
Scattered/border-zone infarct pattern	***	+
Vessel calcification in VB bed on CT	***	+
Truncal type occlusion	++	+

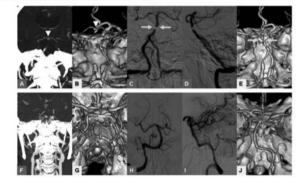


ICAD occlusion: During IAT – Truncal type occlusion



Branching site occlusion

Truncal type occlusion


Neurology. 2016 Oct 11;87(15):1542-1550.

ICAD occlusion: During IAT – Interval angiographic change

Cerebrovasc Dis 2014;37:350-5.

ICAD occlusion: During IAT – Fixed focal stenosis

Front Neurol 2019;9:1195.

ICAD occlusion: Post-IAT

• Residual stenosis ≥ 50% at short-term follow-up angiography or image

Comparisons of ICAD occlusion identification methods

- · Truncal type occlusion / Branching site occlusion
 - · Identification before IAT using CTA.
 - · Not applicable with CAT technique.
 - · Risk of false identification

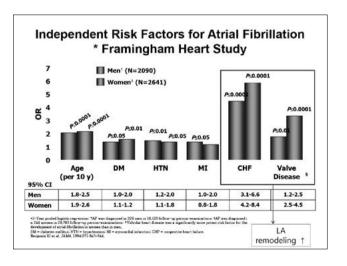
- · Interval angiographic change / Fixed focal stenosis
 - · Most explicit method
 - · Not applicable before IAT.
 - · Applicable with both SRT and CAT technique.

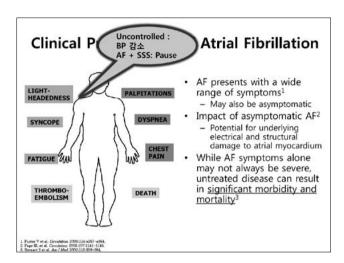
Take home messages

- Importance of stroke classification: functional outcome, recurrence, and strategies for secondary prevention differ by subtype.
- TOAST Classification
 - · LAA / CE / SVO / OD /UE
 - Limitations of TOAST Classification: Lacune ≤15mm, LAA: stenosis ≥50%, UD etiology ↑
- · Reclassification of stroke etiology
 - · nonstenosing atherosclerotic plaque
 - potential embolic sources: atrial cardiopathy, subclinical AF, PFO, occult cancer, etc.
- LVO-IAT: ICAD-occlusion vs embolic occlusion
- Surrogate markers for ICAD-occlusion
 - Clinical: younger, men, smoking, AF(-), truncal type occlusion, scattered-border-zone infarct pattern
 - · Angiographic: Truncal type occlusion, reocclusion tendency, fixed focal stenosis

AF and Cardioembolic stroke

송여정

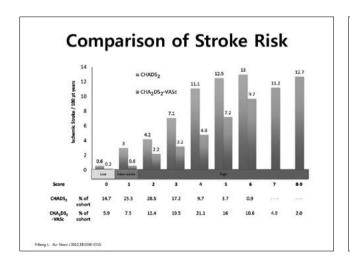

해운대백병원 순환기내과

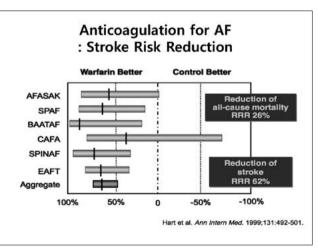

Contents

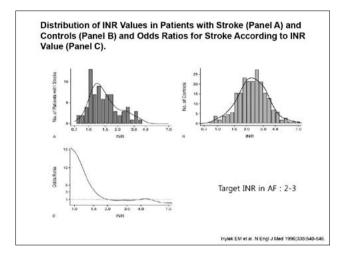
- · Epidemiology of atrial fibrillation and stroke
- Management of thromboembolic risk
- · In/Outpatient monitoring considerations
- · Stroke risk based on atrial fibrillation burden
- · Anticoagulation in AF

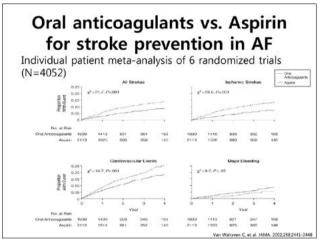
Epidemiology of Atrial Fibrillation and Stroke

Epidemiology of Atrial Fibrillation in the US: Rising Prevalence of the Disease As of 2010, 2.66 million Americ ans are estimated to have AF1 Age, HTN ↑ Lifetime risk for developing AF is high2 - 1 in 4 for men and women aged ≥40 years Prevalence increases rapidly with age³ 3.8% for persons ≥60 years old - 9% for persons ≥80 years old 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 AF prevalence is predicted to increase by 2.5 fold by 2050 AF affects 1 in 25 adults aged >60 years and 1 in 10 adults >80 years³ Loyd John DM et al. Crossioon. 2010;375:41-4170. 2. Lloyd John DM et al. Crossioon. 2004;10:1042-3046. 3. Go AS et al. AAAA. 2001;285:2350-2375. Go AS, et al. JAMA 2001;285:2370-2375

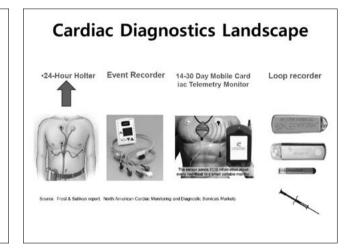


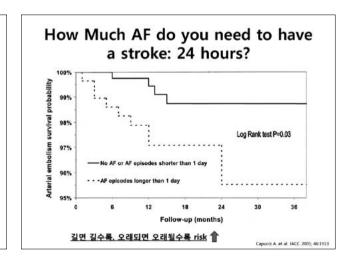

Atrial Fibrillation and Cryptogenic Stroke Why AF Matters

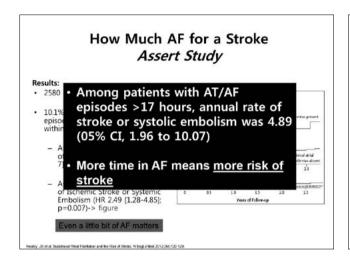

- · AF increases the risk of stroke five-folds
 - AF related stroke are more severe (bedridden & death 1)
- After standard neurologic evaluation, 36% of stroke survivors are classified as <u>cryptogenic</u>
 - AF/Atrial Flutter are intermittent in 30% of stroke patients
- AF detection in cryptogenic stroke changes patient treatment
 - Only indication for stroke patients to receive anticoagulation
 - Prevent future strokes by treatment of underlying cause
 Interrupt natural history progression of atrial fibrillation
 - - * But difficult because of low detection of paroxysmal AF in real world practice.


Management of Thromboembolic Risk

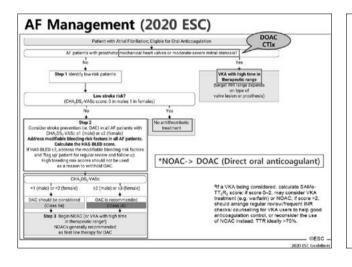
CHADS₂VAS_c Scoring Risk factor C Congestive heart failure/LV dysfunction Н Hypertension Age ≥65y 1 D S₂ Stroke/TIA/TE 2 Vascular disease (prior myocardial infarction, peripheral artery disease, or aortic plaque) V 1 A Age 65-74y 1 Sc Sex category (le female gender) **Maximum Score** CHADS₂-VASc score ≥ 2 (DOAC 보험) =>stroke+AF만 있어도 보험됨! Lip GY, et al., Chest 137, 263-272, 2010

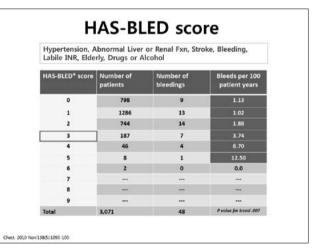


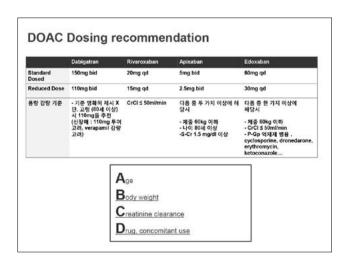


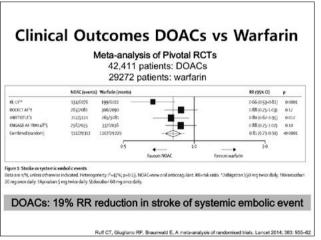


In/Outpatient Monitoring Considerations

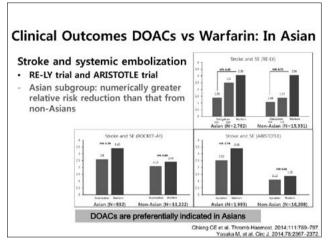


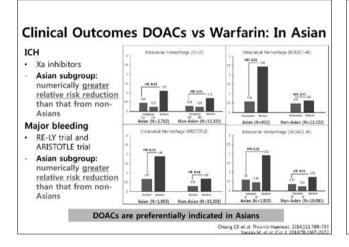

Stroke Risk Based on Atrial Fibrillation Burden





Anticoagulation in AF





Clinical Outcomes DOACs vs Warfarin Meta-analysis of Pivotal RCTs 42,411 patients: DOACs 29272 patients: warfarin DOACs vs Warfarin Ischemic stroke: non-inferior Hemorrhagic stroke: 51% RR reduction All-cause mortality: 10% RR reduction Major Bleeding: similar to warfarin Major Bleeding: similar to warfarin

Stable coronary disease + AF

- 1st Recommendation
 - Single NOAC in stable coronary disease with AF (any kind of NOAC available)
- 2nd Recommendation
 - Individualization-> Aspirin may be applied for long period in <u>high risk patients</u> or those with <u>rapid</u> <u>plaque progression</u>

Korean J Med. 2018;93(2):110-132

PTCA patient with AF

- 1st Recommendation
 - 3제 요법: Warfarin (well controlled INR) or NOAC 다 가능
- 2nd Recommendation
 - 3제 요법 for certain time (1-3개월) -> 2제 요 법
- 3rd Recommendation
 - NOAC을 2제(aspirin, clopidogrel)과 사용시 <u>저용량</u> 사용 권고.

Korean J Med. 2018;93(2):110-132

High risk of gastrointestinal bleeding

- 1st Recommendation
 - Apixaban 5mg bid or Dabigatran
 110mg bid in high risk of GI bleeding

Korean J Med. 2018.93(2):110-32 Yeh et al. 8lood 2014:124 (7):1020-8

Renal impairment and on dialysis

- 1st Recommendation
 - Anticoagulation <u>not appropriate</u> in AF patient on dialysis
- · 2nd Recommendation
 - CCr 15-50ml/min & CHA2DS2-VASc≥2: low dose NOAC (In case of Apixaban, cr ≥1.5mg/dL, age≥80 or weight≤60kg (27∤지)-> 2.5mg bid)
 - CCr 15-50ml/min & CHA2DS2-VASc≥2: Warfarin
- · Not Recommended
 - NOAC not recommended in patients with CCr<15ml/min -updated!

Korean J Med. 2018;93(2):110-132

Elderly (age≥75)

• 1st Recommendation

 Apixaban 5mg bid in patients with age≥75 (In case of Apixaban, cr ≥1.5mg/dL, age≥80 or weight≤60kg (27√N)-> 2.5mg bid)

2nd Recommendation

 Dabigatran 110mg bid, Rivaroxaban 20mg qd, or Edoxaban 60mg qd in patients with age≥75

<u>Apixaban showed superiority</u> on bleeding in patients age≥75 (ARISTOTLE trial subgroup study)

Korean J Med. 2018;93(2):110-132

Take Home message

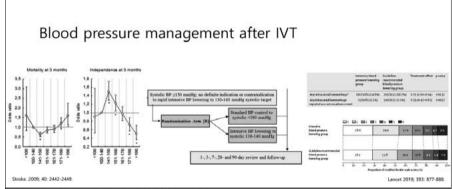
- AF detection in stroke changes patient treatment & prognosis
- Anticoagulation: do not use underdose unless high bleeding condition: use recommended dose
- Beneficial DOAC over warfarin in patients with AF & stroke
- For rate control of AF, consultation to cardiologist

Cardioembolic stroke 1: Overview and intra-IAT / post-IAT care

장준영

서울아산병원 신경과

Contents


- Postprocedural management of blood pressure
- · Postprocedural management of blood glucose
- · Postprocedural management of antithrombotics: IVT, IAT, acute stenting
- END management: stroke progression, symptomatic hemorrhage, cerebral edema

The influence of BP on clinical outcomes in acute ischemic stroke Due to the failure of authorsplation of created blood flow (CIF) in the inchemic human loran, the CIF is passively dependent on the mean arterial pressure | Penumbra | Penumb

Blood pressure management of acute ischemic stroke: current guidelines

- BP <220/120mm Hg who did not receive IVT or IAT and do not have a comorbid condition requiring acute antihypertensive treatment
- 2. Early treatment of hypertension is indicated when required by comorbid conditions (acute coronary event, acute HF, aortic dissection, postthrombolysis sICH, preeclamsia, etc.) Lowering BP initially by 15% is probably safe
- 3. <185/110 mmHg before IV fibrinolytic therapy, maintain <180/105 mmHg for 24 hours
- Starting off restarting antihypertensive therapy during hospitalization in patients with BP > 140/90 mmHg who are neurologically stable is safe and is reasonable

Stroke. 2018;49:e46-e99

- Current guidelines: SBP <180, DBP <105 after IVT
- More research is needed to determine the optimal level of SBP after IVT
- (SBP 141–150 mmHg might be optimal after IVT)
- SBP 130-140 (144.3) vs. SBP <180 (149.8) after IVT: ICH ↓, no improvement in functional outcome

Options to treat arterial hypertension in patients with AIS who are candidates for acute reperfusion therapy

Patient eligible for acute reperfusion therapy except that BP is >185/110 mm Hg

Labetalol 10-20 mg IV over 1-2 minutes, may repeat 1 time; or

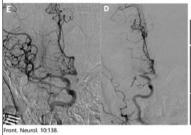
Nicardipine 5mg/h IV, titrated up by 2.5 mg/h every 5–15 minutes, maximum 15mg/h; when desired BP reached, adjust to maintain proper BP limits

If BP is not maintained at or below 185/110 mmHg, do not administer alteplase

Management of BP during and after rtPA or other acute reperfusion therapies to maintain BP at or below 180/105 mmHg

Monitor BP every 15 minutes for 2 hours from the start of rtPA therapy every 30 minutes for 6 hours, and then every hour for 16 hours

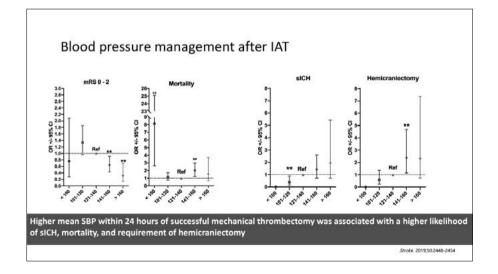
If systolic BP is >180-230 mm Hg or diastolic BP >105-200 mmHg

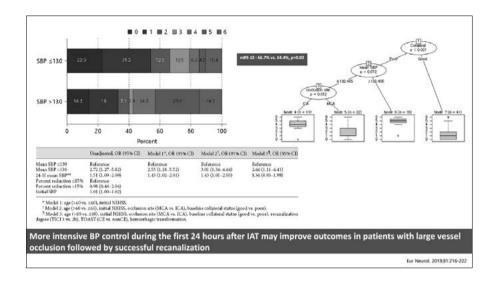

Labetalol 10 mg IV followed by continuous IV infusion 2-8 mg/min; or

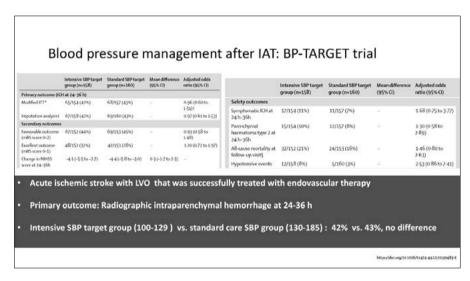
Nicardipine 5 mg/h IV, titrated up to desired effect by 2.5 mg/h every 5-15 minutes, maximum 15 mg/h

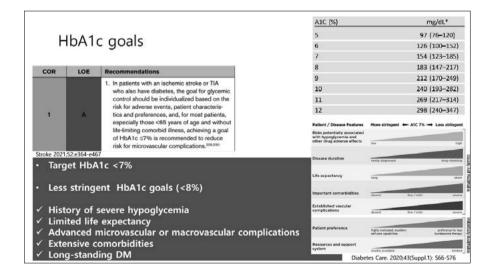
If BP is not controlled or diastolic BP \geq 140 mm Hg, consider IV sodium nitroprusside

Stroke. 2018;49:e46-e99

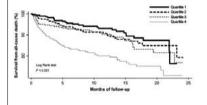

Blood pressure management after IAT




- If reperfusion is achieved, aim for moderate or normal BP goal of SBP <140 or 160 mmHg
- In patients with tandem lesions who undergo adjunctive extracranial stenting, or in patients with intracranial lesions who undergo intracranial stenting, more intensive BP lowering may be warranted
- In patients with incomplete reperfusion (TICI 2a or less), it is judicious to maintain an upper BP limit of <180/105 mmHg


Stroke, 2018;49:2801-2807

Blood pressure management after IAT OR (95% CI) 0.70 (0.56-0.87) 1.49 (1.18-1.88) Three-month functional independence (mRS 0-2) 0.83 (0.63-1.08) 1.26 (0.94-1.69) Outcome OR (95% CI) Three-month functional independer (modified Rankin Scale score 0-2) Permissive hypertension* 1.00 (reference category) Moderate BP control^b 2.75 (0.73-10.35) onth mortality 1, functional Intensive BP control 1.26 (0.20-8.12) 1.00 (reference category) sion (<220/110 or <180/105mmHg after IVT) Moderate BP control^b 0.08 (0.01-0.054) Intensive BP control Neurology. 2017;89:540-547

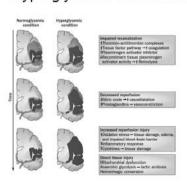


Glycemic control in acute ischemic stroke: current guideline

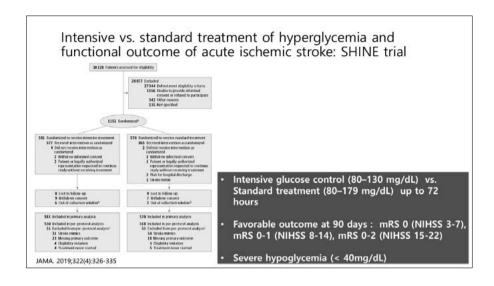
4.6. Glucose	COR	LOE	New, Revised, or Unchanged
Hypoglycemia blood glucose <60 mg/dL should be treated in patients with AIS.	Ü	C-LD	Recommendation and COR unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Evidence indicates that persistent in-hospital hyperglycemia during the first 24 hours after AIS is associated with worse outcomes than normoglycemia, and thus, it is reasonable to treat hyperglycemia to achieve blood glucose levels in a range of 140 to 180 mg/dL and to closely monitor to prevent hypoglycemia.	Ila	C-LD	Recommendation and COR unchanged from 2013 AlS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

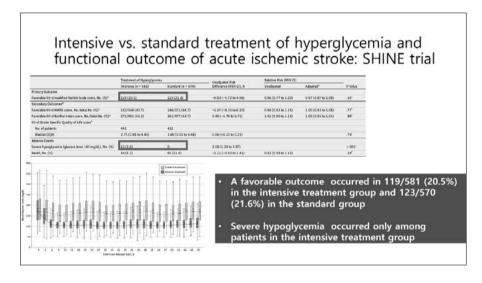
Stroke 2019;50:e344-e418

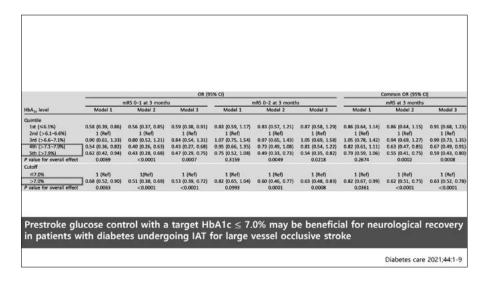
Poststroke hyperglycemia and outcome in acute ischemic stroke



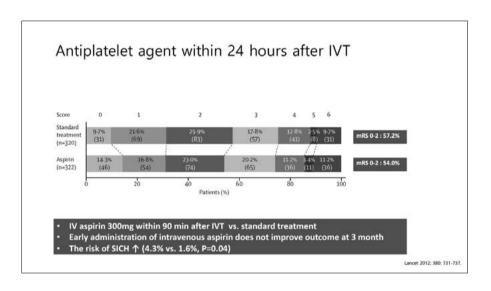
	Quartic of initial glocore level						
	Quartile I	Quartile 2	Quartile 3	Quartile 4	Frend		
All-corner death							
Number of events	26	34	36	67			
Person-years (PYs)	303.5	316.4	291.5	290.0			
Incidence rate (per 1000 PVs)	85.7	197.5	122.2	251.0			
Modell*	1 (reference)	1.23 (0.74-2.04)	1.40 (0.84-2.51)	2.62 (1.63-4.12)	< 0.980		
Model2*	1 (reference)	1.17 (0.70-1.96)	1.34 (0.81-2.24)	2.32 (1.46-3.79)	0.602		
Model3*	I (reference)	1.18 (0.71-4.91)	1.39 (0.43-2.31)	2.18 (1.36-3.40)	0.02		
Cardiovascular doeth.							
Number of esons	15	21	20	32			
Incidence rate (per 1000 PVa)	49.4	66.4	67.9	1100			
Modell*	1 (mference)	1.32 (0.68-2.57)	1.35 (0.49-2.64)	2.17 (1.17-4.00)	0.60		
Model2*	1 certerocco	1.25 (0.64-2.45)	1.31 (0.96-2.57)	1.93 (1.12-3.63)	0.1		
Model3*	T cuferosco	1.76 (0.64-2.48)	1.29 (0.65-2.56)	1.90 (1.01-1.60)	0.15		

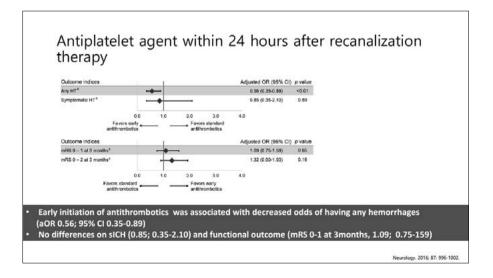

Higher glucose levels in the ER were significantly associated with increased risk of all-cause mortality (HR; 2.18, 95% CI, 1.36–3.48) and cardiovascular death (HR, 1.91; 95% CI, 1.01–3.61)


European Journal of Neurology 2012, 19:884-891


Hyperglycemia and infarct evolution

Nature Review Neurol. 2010;6: 145-15

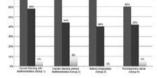




Postprocedural antiplatelet agent after IAT C Effect of time on achieving midd score at 0-2: patients undergoing the one achieving midd score at 0-2: patients undergoing the one achieving midd score at 0-2: patients undergoing the one achieving midd score at 0-2: patients undergoing the one achieving midd score at 0-2: patients undergoing the one achieving midd score at 0-2: patients undergoing the one achieving midd score at 0-2: patients undergoing the one achieving midd score at 0-2: patients undergoing the one achieving midd score at 0-2: patients undergoing the score at 0-2: patients under

Remnant severe stenosis of target vessel acute coronary syndrome, PCI within a year

Postprocedural (<24hr) antiplatelet use in patients with ischemic stroke who underwent IAT


Study	sICH (%)	sICH, OR	Mortality	Mortality, OR	mRS ≤2	mRS ≤2, OR
Broeg-Morvay et al.	6%/6%	0.92 (0.24-3.46)	18%/23%	0.75 (0.34-1.67)	34%/16%	0.61 (0.32-1.17)
Ernst et al.	13%		33%		28%	
Memon et al.	14%		23%		60%	
Mulder et al.	17%/4%	4.80 (1.77-13.02)	33%/17%	2.46 (1.27-4.76)	23%/36%	0.54 (0.28-1.05)
Pandhi et al.	6%/7%	0.81 (0.25-2.68)	25%/26%	0.97 (0.50-1.85)	50%/48%	1.11 (0.63-1.97)
Sugiura et al.	13%/3%	5.43 (1.46-20.13)				

sICH 6-17%, mortality 18-33%, functional independence 23-60%

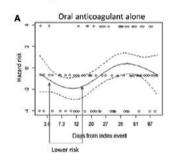
ront Neurol. 2018: 9: 238.

Optimal treatment strategy for tandem occlusive stroke

· Carotid stenting with acute antithrombotics: Highest rate of recanalization and favorable outcome, no difference in sICH

J Am Coll Cardiol Intv 2018; 11: 1290-1299

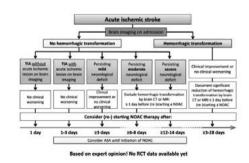
Optimal treatment strategy for tandem occlusive stroke


	Thrombectomy and cervical ICA stenting			
	1 antithrombotics (n=138)	At least 2 antithrombotics (n=118)	p value	
Recanalization	112/138 (81%)	100/117 (85%)	0.45	
Early neurological improvement	31/67 (46%)	32/68 (47%)	1	
90-day favorable outcome	77/136 (57%)	70/118 (59%)	0.76	
90-day mortality	10/136 (7%)	14/118 (12%)	0.31	
Symptomatic hemorrhagic complications	5/137 (4%)	8/118 (7%)	0.40	

Among patients with carotid stenting with antithrombotics, there was no significant differences in efficacy and safety
outcomes by type of antithrombotics regimen used (1 vs. 2 antithrombotics agents)

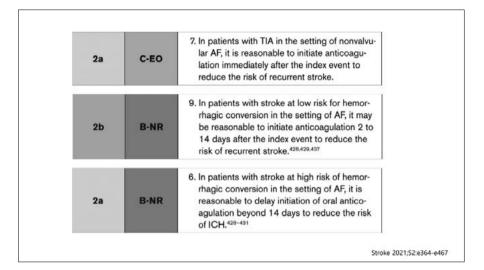
Postprocedural antiplatelet agent after IAT

- · Acute carotid or intracranial stenting
- 1 DAPT
- ② IV tirofiban maintenance → DAPT
- ③ antiplatelet monotherapy: IVT, infarct size↑, postprocedural hemorrhagic transformation


Postprocedural anticoagulation after recanalization therapy

Initiating anticoagulation 4 to 14 days from stroke onset was associated with a significant reduction in primary outcome (stroke, TIA, symptomatic systemic embolization, symptomatic cerebral bleeding, and major extracranial bleeding), compared with initiating before 4 or after 14 days

Stroke. 2015;46:2175-2182


Postprocedural anticoagulation after recanalization therapy

- 1: TI
 - 1-3 : TIA with acute ischemic lesion ≥ 3: Mild neurological deficit
 - ≥ 6-8: Moderate
 - ≥ 12-14: Severe
- ≥3-28: Hemorrhagic transformation

Europace (2021) 00.1-65

Postprocedural anticoagulation after recanalization therapy

- Neuroimaging at 24 hours to assess for hemorrhage and guide the timing of antithrombotics
- Small infarct volume (< 30 cc): initiate anticoagulation
- Moderate infarct volume (30-70 cc): 2 to 4 weeks Large infarct volume (> 70 cc): 4 to 6 weeks

Stroke. 2018;49:2801-2807

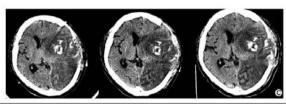
Management of early neurological deterioration

- Early neurological deterioration: NIHSS ≥ 2 within during 24hr 7 days after hospitalization
- Ischemia progression or recurrence: volume expansion, induced hypertension, timely administration of antithrombotics
 - → large artery atherosclerosis
- Symptomatic hemorrhage: blood pressure, glucose, tPA reversal Cerebral edema : osmotherapy, hypothermia, decompression, CSF diversion → high NIHSS after ERT, failed recanalization

Neurology 2019:93: e1955-e1963

Induced hypertension therapy 200 - Trialing increases: 179.7 a 153.1 mostly from excluding improvement: 179.7 a 153.1 mostly from exposers size: 12.0 ft. 179.7 a 153.1 mostly from exposers size:

- Noncardioembolic stroke who were ineligible for revascularization therapy, progressive stroke
- CBF, oxygen delivery, removal of metabolic waste ↑ , collateral channels ↑
- Exclusion: intracranial hemorrhage, congestive heart failure, active coronary ischemia (changes on ECG or


tPA reversal for bleeding complications

ECASS-II hemorrhage grade* Imaging criteria Hemorrhagic infarction type 1 (HI1) Hemorrhagic infarction type 2 (HI2) Parenchymal hematoma type 1 (PH1) Parenchymal hematoma type 2 (PH2) Hematoma (homogenous hyperdensity) >30% of infarct twith significant mass effect, or hemorrhage beyond the infarct borders

- Symptomatic hemorrhage or parenchymal hematoma (PH1, PH2) within 24 hours after administration IV tPA
- Cryoprecipitate (includes factor VIII): 10 U infused over 10-30 min (onset 1h, peaks in 12 h), administer additional dose for fibrinogen level of < 150 mg/dL
- ✓ Fresh frozen plasma (10-15ml/kg)
- ✓ Tranexamic acid 1000mg IV over 10 min
- aminocaproic acid 4-5g over 1 h, followed by 1g IV until bleeding is controlled

Stroke 2019:50: e344-e418

Malignant cerebral edema

- The greatest risk of cerebral edema within 48-72 hours (30% within 24 hours), and subsequent swelling as late as 8 days.
- Decompensation: abrupt hemorrhagic transformation, gradual- progressive loss of ischemic penumbra
- Younger age, proximal occlusion, NIHSS ≥ 15 (nondominant) or ≥ 20 (dominant)
 Hypodensity in one-third of the MCA territory, DWI infarct volume > 80 mL, midline shift within 6 hours

Korean J Crit Care Med 2014:May 29(2): 93-98 J Neurointervent Surg 2017:9:1258-1266

Causes specific IICP management in malignant cerebral

- Brain swelling (cytotoxic, vasogenic edema)
- → Decompressive craniectomy, osmotherapy, TTM
- 2 Cerebral artery dilation and CBV increase
- → Hyperventilation and cerebral vasoconstriction
- 3 Venous outflow obstruction
- → Head elevation 30 degree, neutral neck position, loosening neck tie, avoidance of jugular venous catheter
- Acute hydrocephalus due to CSF outflow obstruction
- → CSF drainage via EVD

Journal of Stroke 2014;16(3): 146-160

Neurocrit Care 2009;11(3): 427-436 J Neurointervent Surg 2017:9:1258-1266

Malignant cerebral edema Osmotic therapy: hypertonic saline, mannitol (0.5-1g/kg every 4-6 hours) Hypothermia: 33°C for 48-72 hours (till midline shifting halted) Hyperventilation: target PCO2 of 30 mm Hg (short lived 1-3 hours) Head elevation: 30-45

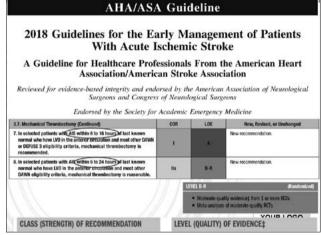
Decompressive surgery: age \leq 60 – both survival and functional benefit, age > 60 – survival benefit

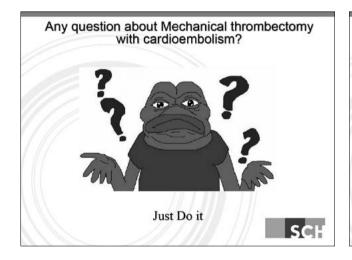
Summary

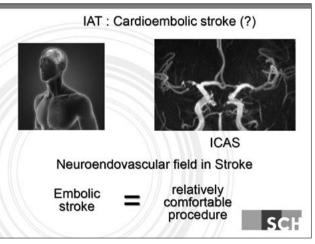
- Acute BP management
- <220/120, (re)start anti-HT during hospitalization if neurologically stable IVT: <185/110 before IVT, <180/105 for 24 h after IVT by current guideline, SBP 140-150 may be optimal IAT: <140-160 after successful recanalization, <180/105 if recanalization failed, personalized
- **BP** management
- Target blood glucose level in acute ischemic stroke: 140 to 180mg/dL

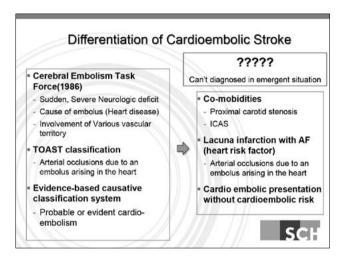
Summary

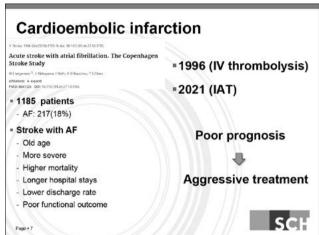
- Postprocedural antithrombotics
- ✓ Antiplatelet administration is generally delayed until 24 hours later
 ✓ Early administration of antiplatelet might be considered in the presence of concomitant conditions for substantial benefit: acute intra or extracranial stenting, remnant severe stenosis of target vessel, acute coronary syndrome or recent PCI
 ✓ Anticoagulant: mild- 1~3, moderate- 6~12, severe- 2~3 weeks
- END management:

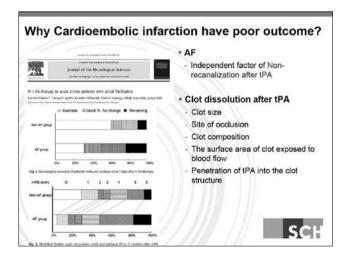

- Ischemic progression: induced hypertension
 Symptomatic hemorrhage: tPA reversal, BP control
 Cerebral edema: osmotic therapy, hypothermia, CSF diversion, decompression

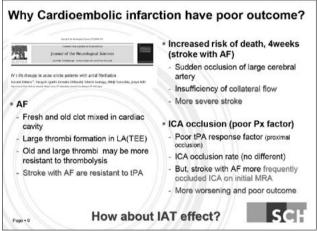

Cardioembolic stroke 2: IAT

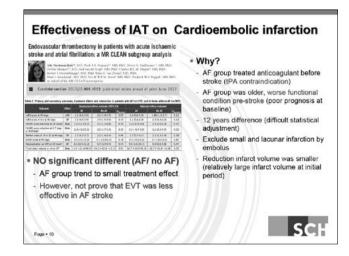

신동성

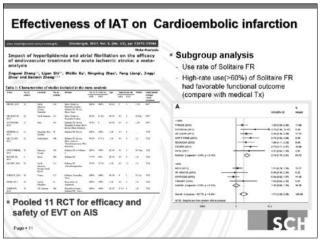

순천향대 부천병원

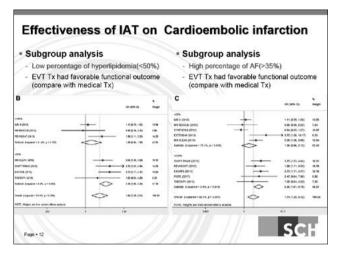


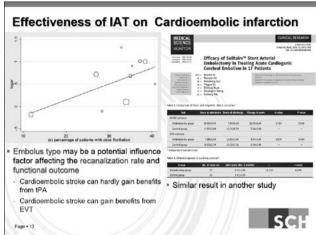


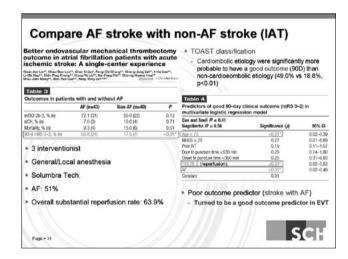


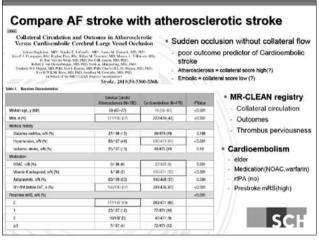


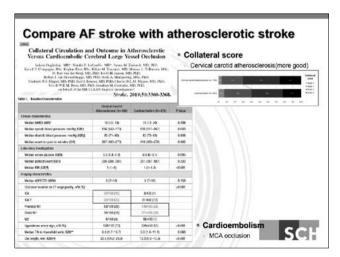


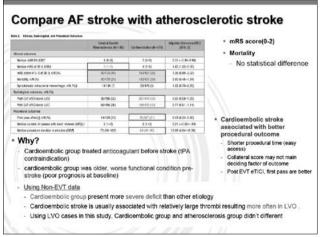


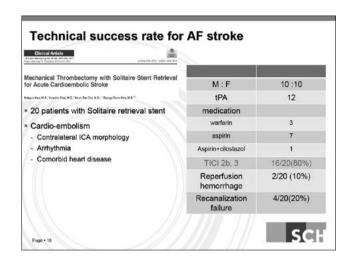


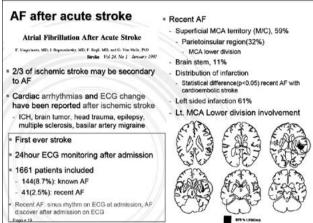


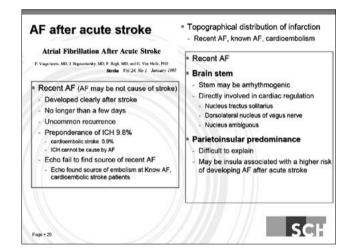


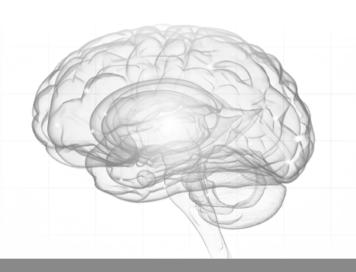












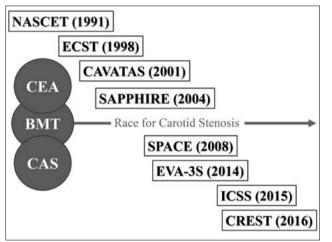
대한뇌혈관내치료의학회/ 대한뇌혈관외과학회 합동연수교육

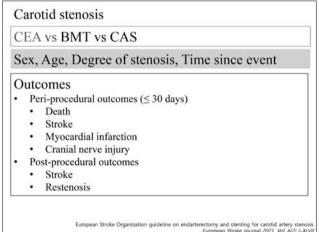
(2021 대한뇌혈관내치료의학회 추계보수교육 및 ARCS)

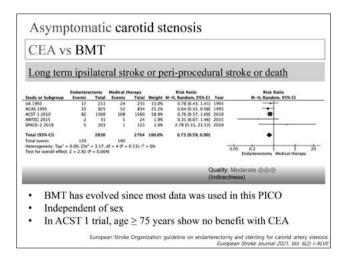
Session 2. Carotid revascularization strategy

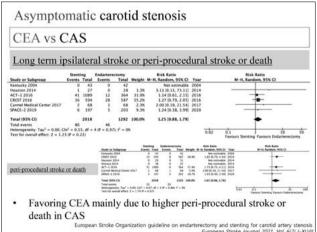
좌장 : 김태선(전남대), 윤석만(순천향대)

1. Carotid endarterectomy 김용배(연세대 세브란스병원)

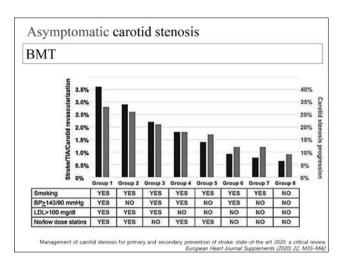

> 2. EC-IC Bypass 윤원기(고려대 구로병원)


3. Carotid stenting 이동훈(가톨릭대 성빈센트병원)


Carotid endarterectomy


김용배

연세대 세브란스병원



Asymptomatic carotid stenosis CAS vs BMT Long term ipsilateral stroke or peri-procedural stroke or death Study or Subgroup Spectrol 2019 6 197 1 113 100.0% 3.44 [0.42, 28.23] Total (95% C) 197 1 113 100.0% 3.44 [0.42, 28.23] Total (95% C) 197 1 13 100.0% 3.44 [0.42, 28.23] Total (95% C) 197 1 13 100.0% 3.44 [0.42, 28.23] Total (95% C) 197 1 13 100.0% 3.44 [0.42, 28.23] Total (95% C) 197 1 13 100.0% 3.44 [0.42, 28.23] Total (95% C) 197 1 13 100.0% 3.44 [0.42, 28.23] Quality: Very low (100 (Blas, Indirectness, Imprecision) • Evidence-based recommendation indicated against CAS as a routine alternative to BMT alone European Stroke Organization guideline on endarterectomy and stenting for carotid artery stenosis fungeen Stroke Coganization guideline on endarterectomy and stenting for carotid artery stenosis

Perioperative mortality & morbidity

Improving operative stroke/death rates in major randomized trials

Trial	Publication Year	CEA*	CAS ⁴
Symptomatic			
NASCET	1991, 1998	6.7%	
ECST	2003	7.5%	
EVA-3S	2008	3.9%	9.6%
SPACE	2008	6.6%	7.4%
ICSS	2010	3.4%	7.4%
CREST	2010, 2016	3.2%	6.0%
Asymptomatic			
ACAS	1995	2.3%	
ACST	2004	2.8%	
CREST	2010, 2016	1.4%	2.5%
ACTI	2016	1.7%	2.9%

^{*30-}day any operative stroke/death

"History and Major Trials in Carotid Revascularization" Supplemental Tables I & Stroke, 20:

Asymptomatic carotid stenosis

Expert consensus statement

in selected patients 75 years of age or older with \geq 60% asymptomatic carotid artery stenosis and an expected survival of at least five years, who are considered to be at an increased risk of stroke on best medical therapy alone, carotid endarterectomy is suggested after careful consideration of the risks and benefits at a multi-disciplinary team meeting.

> Risk of in-hospital stroke or death following endarterectomy or stenting for asymptomatic carotid stenosis should be as low as possible, ideally below 2%

> European Stroke Organization guideline on endarterectomy and stenting for carotid artery stenosis European Stroke Journal 2021, Vol. 6(2) 1–XLVI

Asymptomatic carotid stenosis

Increased stroke risk

- Silent infarction on neuroimaging
- · High degree or progression of stenosis
- Echolucent plaque on ultrasound
- Intra-plaque haemorrhage on MRI
- Micro-emboli on TCD
- · Reduced cerebrovascular reserve on TCD

Asymptomatic carotid stenosis

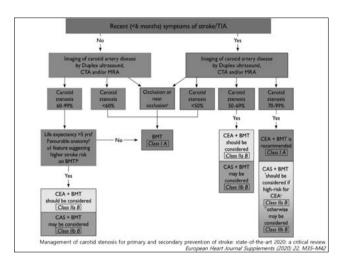
Practical Real World Statement

- < 50% stenosis : MILD
 - · Risk factor control with lifestyle change and medication
 - · Annual carotid duplex surveillance
- 50-69% stenosis : MODERATE
- · Intensive medical therapy
- Tight imaging surveillance
- > 70% : SEVERE
 - · Consider carotid revascularization with BMT
 - Many surgeon adopt more conservative policy until >80% stenosis

Management of asymptomatic extracranial carotid atherosclerotic disease UpToOate, 202

European Stroke Organization guideline on endarterectomy and stenting for carotid artery stenosis

European Stroke Journal 2021, Vol. 6(2) I-XLVIII

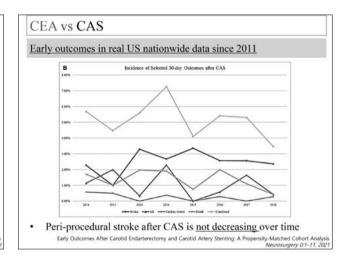

Symptomatic carotid stenosis

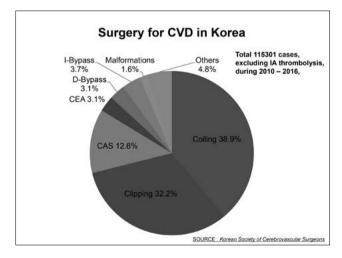
CEA VS CAS from meta analysis ICSS, CREST, EVA-3S, SPACE

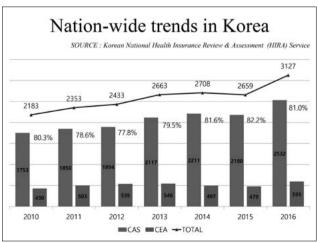
- In CAS, risk increase with age, if >80 yrs, then OR 4.15 for procedural stroke/death, not in CEA
- The age effect become apparent in 60-65 yrs
- CEA superior to CAS in aged >70 yrs
- CEA reduce stroke with moderate (50-69%) and severe (70-99%) stenosis, except for 'near occlusion'

Management of carotid stenosis for primary and secondary prevention of stroke: state-of-the-art 2020: a critical review

European Heart Journal Supplements (2020) 22, M35-M42


Asymptomatic or Symptomatic carotid stenosis




· Low quality of evidence favoring CEA

European Stroke Organization guideline on endarterectomy and stenting for carotid artery stenos

European Stroke Journal 2021, Vol. 6(2) I-XLV

Biased Practice Trends in KOREA

- · Lack of interest in performing CEA
- · Wider popularity of endovascular surgeon
- · Tends to prefer non-invasive modality

- · Need qualified candidate for each intervention
- · Candid evaluation for institutional outcome
- · Foster competent surgical option

Protocol for Carotid Artery Stenosis

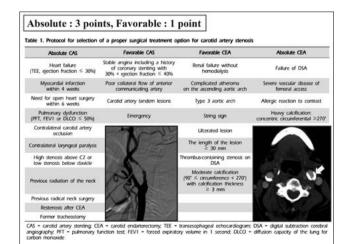
PROCESS

- 1. Consensus
 - by Neurology, Neurosurgery, Neuroradiology
- 2. Review (192 articles)
 - RCTs, well-designed case-control (IF ≥ 6)
- 3. Qualifying the proper candidate

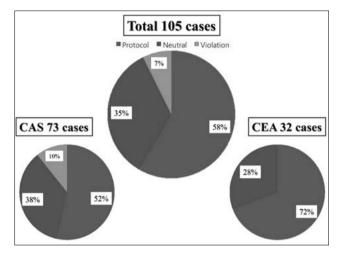
Protocol for Carotid Artery Stenosis

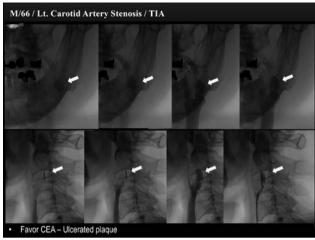
Treatment Indications

Symptomatic stenosis $\geq 50\%$ Asymptomatic stenosis $\geq 80\%$ or $\geq 50\%$ with contralateral occlusion

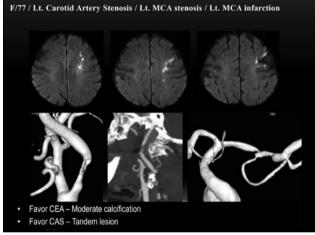

Timing

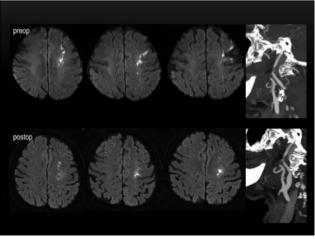

 \leq 2 weeks for symptomatic stenosis

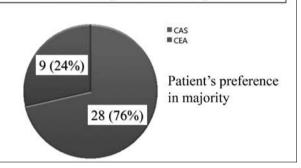

Protocol for Carotid Artery Stenosis


Four categories: based on the selected factors

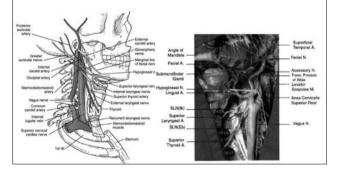

- Anatomic approach to carotid artery High bifurcation, Previous neck dissection, Radiation,
- Endovascular accessibility
 Vascular access, Allergy to contrast, Renal dysfunction,
 Type III aorta
- Characteristics of stenosis & plaque Calcification, Ulceration, Length, Collaterals, Tandem lesion, Contralateral occlusion
- Cardiopulmonary function
 Heart failure, Myocardial infarction, Pulmonary dysfunction







Neutral 37 (35.2%) cases no score in 27, equal score in 10 +CAS in 28 pts / CEA in 9 pts


Protocol-Based Decision

- About 60% of the patients can be followed by the protocol
- Neutral 76% of the patients tend to select CAS
- Individual indication can contribute to improve overall outcome
- There should be "BOTH" options for carotid stenosis
- Protocol can be a reasonable solution to correct the inherent bias in clinical practice

Technique

Anatomy

- · 4 structures crossing over ICA
 - Hypoglossal N / Occipital A / Facial V / Ansa Cervicalis

Technique

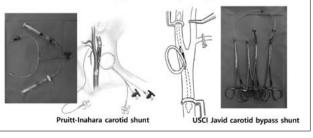
as for Neurosurgeon

- · Neurological surgery has yielded favorable outcomes
 - ① use of the operating microscope
 - 2 intraoperative monitoring of cerebral function
- Safety
 - < 3% in the asymptomatic patient
 - < 5-6% in the symptomatic patient
 - < 2% in the asymptomatic patient
 - < 4% in the symptomatic patient
- The choice of the CEA technique: depend on the experience and familiarity of the individual surgeon

Technique - Anesthesia

General vs Local

Lancet 2008; 372: 2132-2142. Meta-analysis, Hajibandeh S et al. Anesthesia, 2018; 73: 1280-1289

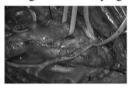

- · Both General and Local anesthesia are safe
- · Surgeon, Anesthetist, Patient individual base
- Local anesthesia might have some benefit of lower morbidity and mortality
- · Local anesthesia may reduce use of shunts

 $_{\rm LA} \geq _{\rm G}$

Technique - shunt

Use of Shunts

- · No evidence for the routine use of shunt
- Little evidence to use one form of monitoring over another in selecting patients requiring a shunt



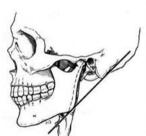
Technique - repair

Primary Repair vs Patch Angioplasty

Meta-analysis, Texakalidis P et al. J Vasc Surg, 2018;1241-1256

- · Patch angioplasty may reduces the risk of occlusion and re-stenosis, and risk of stroke / death
- · Synthetic / Bovine pericardium / Venous
- · Longer cross-clamping time

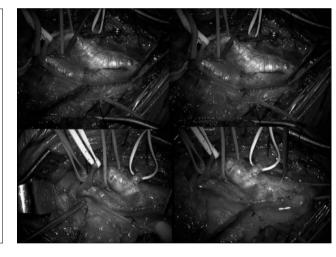
Primary ≤ Patch

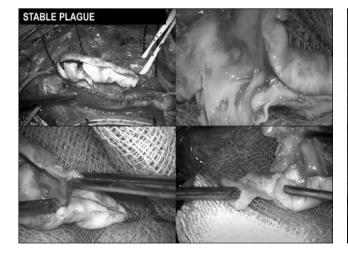

Technique - repair

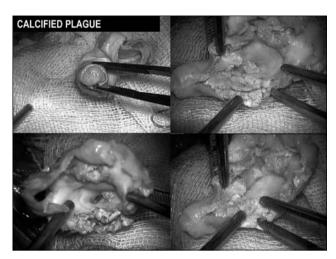
Primary Repair vs Patch Angioplasty

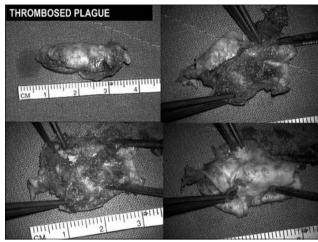
Conclusions: This systematic review showed no conclusive evidence of a difference between carotid endarreectomy with parth anaioplasty versus primary closure of the arterial vall on all-cause mortality. < 30 days, mortality, < 30 days, stroke, or any other serious adverse events. These conclusions are based on data from 15 to 35 years ago, obtained in trials with very low certainty according to GRADE, and should be interpreted caudiously. Therefore, we suggest conducting new randomized chilinical trials patch, angioplasty versus primary closure in canotide nadratectomy in symptomatic patients with an internal carotid artery stenois of 50% or more. Such trials ought to be designed according to the Standard Protocol Items: Recommendations for Interventional Trials statement (Chan et al., Ann Intern Med 1200–7, 2013) and reported according to the Consolidated Standards of Reporting Trials statement (Schulz et al., 7, 2010). Until conclusive evidence is obtained, the standard of care according to guidelines should not be abandoned. Systematic review registration: PROSPERO CRD42014013416. Review protocol publication 2019 DOI: https://doi.org/ 10.1136/bm/ppen-2018-026419.

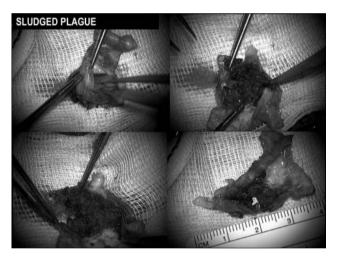
Keywords: Carotid stenosis, Carotid endarterectomy, Patch, Systematic review, Primary closure, Trial sequential analysis, GRADE

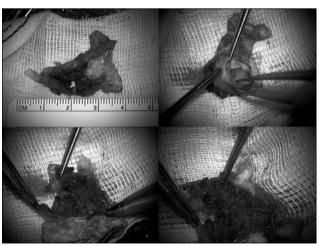

Technique Higher exposure

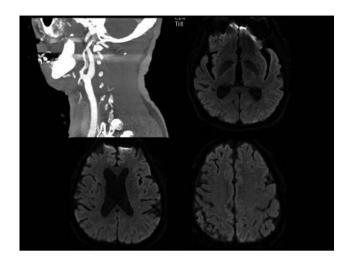



Blaisdell's line


: tip of mastoid process - angle of mandible







Carotid stenosis

Expert consensus statement

12/12 experts concluded that where possible, the indication for carotid endarterectomy or carotid artery stenting should be discussed at a multi-disciplinary team meeting. Consensus decisions can be made in between meetings, in order not to delay urgent revascularisations.

European Stroke Organization guideline on endarterectomy and stenting for carotid artery stenosis

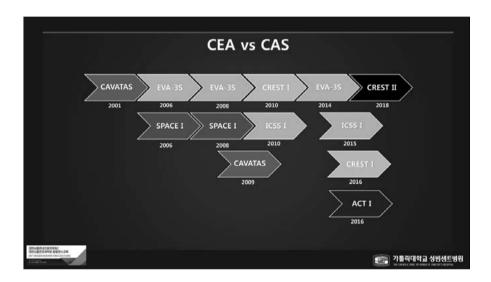
European Stroke Journal 2021, Vol. 6(2) I-XLVII

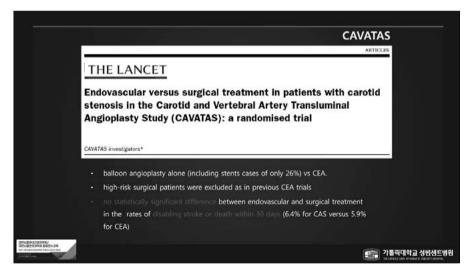
EC-IC Bypass

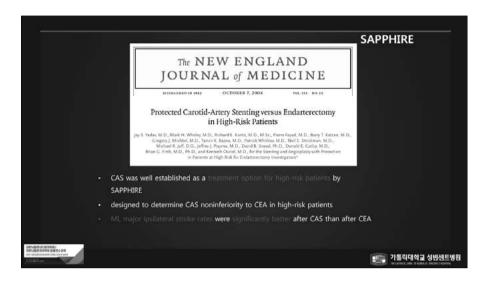
윤원기

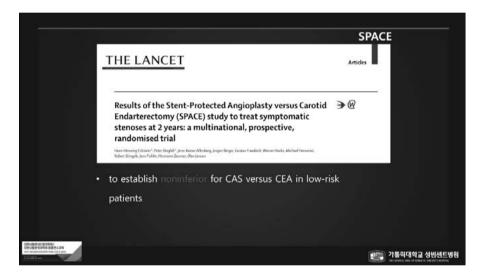
고려대 구로병원

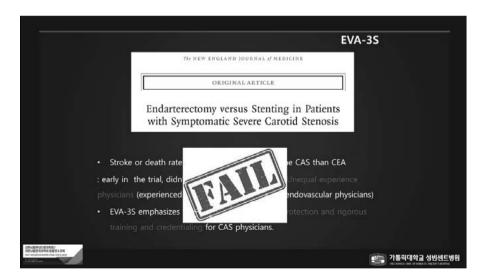
Role of Bypass Surgery for Acute Ischemic Stroke in the Era of EVT

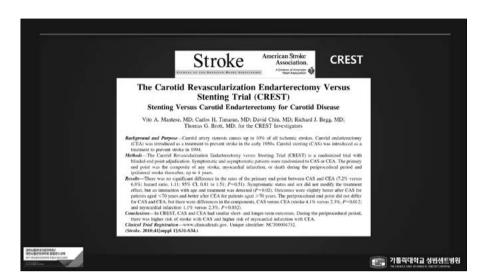

Efficacy of low flow EC-IC bypass surgery in cerebral ischemic disease is controversial. Since the report of COSS trial reported in 2011, reluctance on the performance of this surgery has been spread. However, we could have witnessed many cases of excellent clinical outcome following this bypass procedure in the real-world daily practice when performed with a narrow and concrete indication. Especially, a symptomatic occlusion of anterior circulation intractable to medical treatment has been proved to be a good candidate.

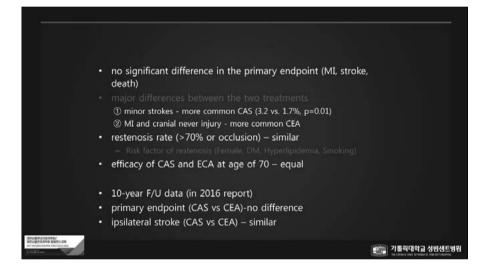

In this short lecture, I would like to introduce the possibility of its application to acute ischemic stroke (AIS) caused by large vessel occlusion (LVO). In the era of endovascular treatment (EVT), surgical management is becoming minor troopers especially in the battle field of AIS by LVO. The recanalization rate by EVT in acute setting reaches up to 85% and many prospective trials have proved EVT can improve clinical outcome. However, 15 to 25% patients of AIS by LVO still require further management rather than medical care. And very late arrival stroke patients have low chance to be recanalized. Majority of these patients are destined to end up with severe neurologic sequelae. Hence, I started to perform timely urgent low flow bypass surgery since 2017 and analyzed my case series and pooled data of retrospective reports. In this lecture, I provide you some data of this study with background knowledge and wish you to participate in the journey of "Dare to Do, Know and Spread".

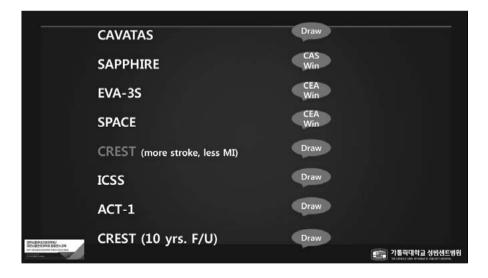

Carotid stenting

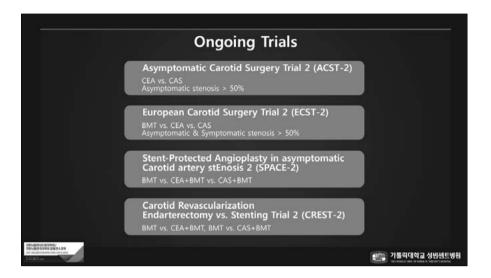

이동훈

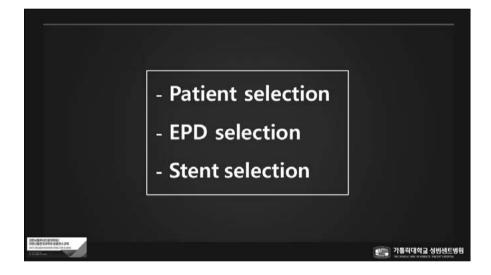

가톨릭대 성빈센트병원

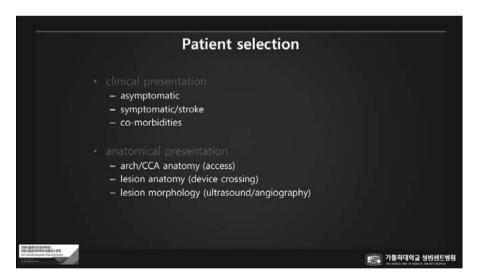


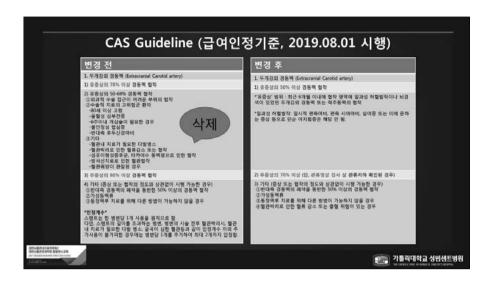


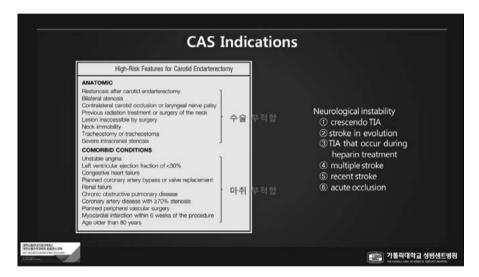


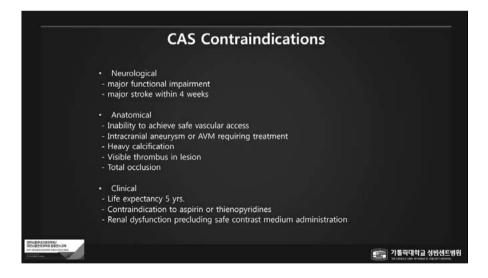


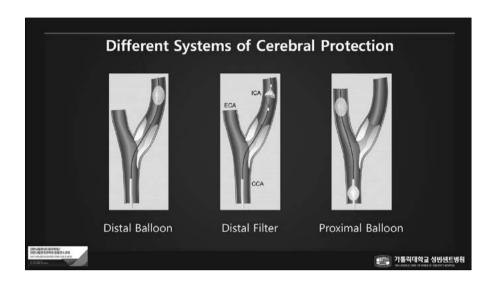


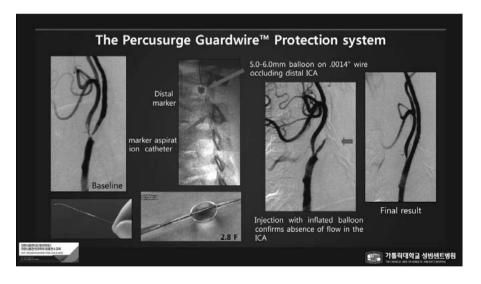


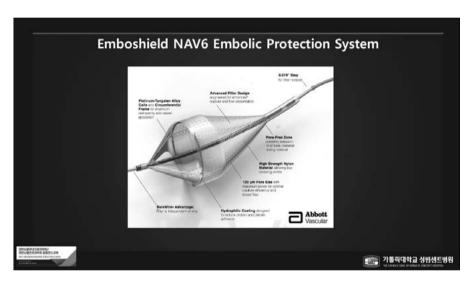


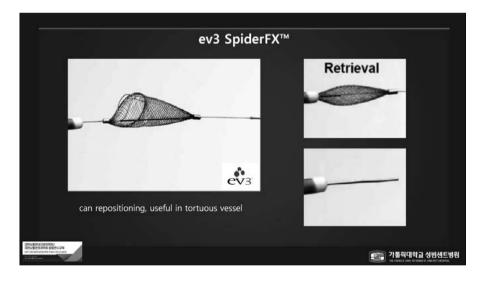


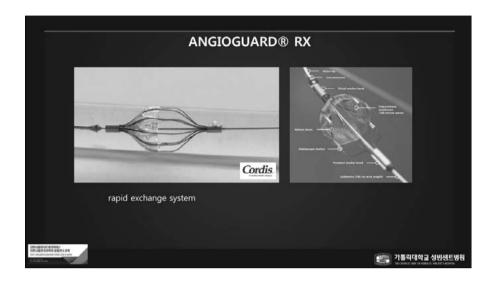


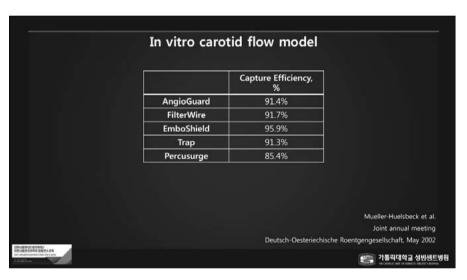


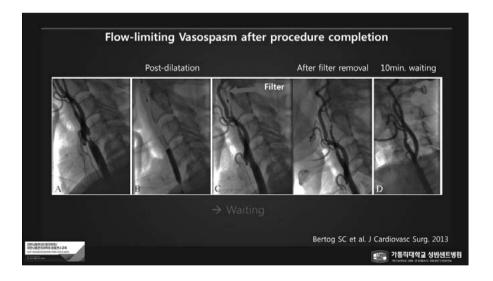


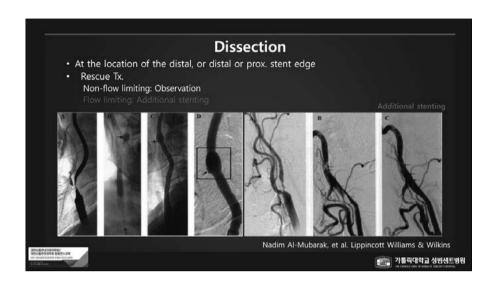


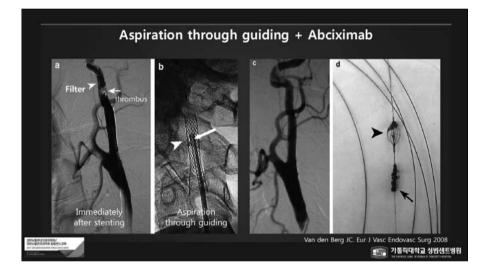


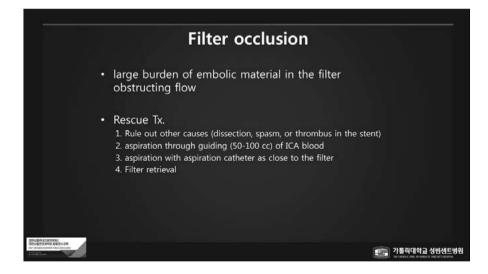


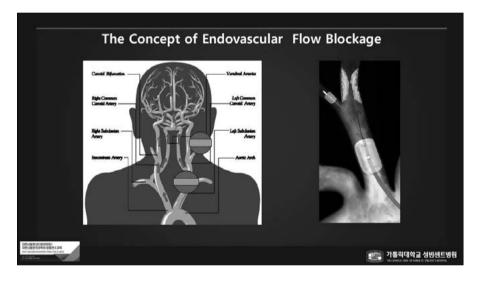


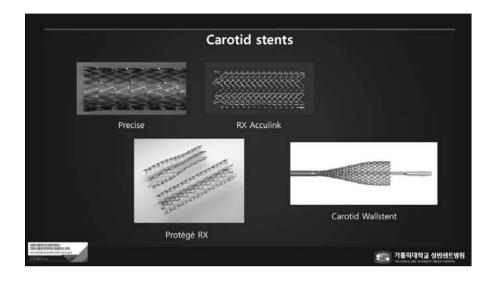


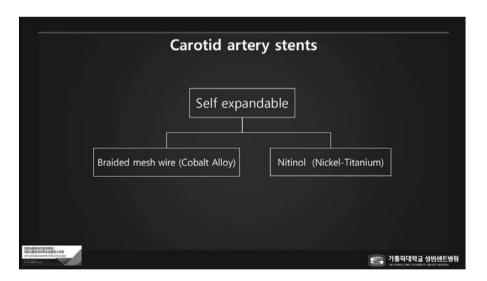


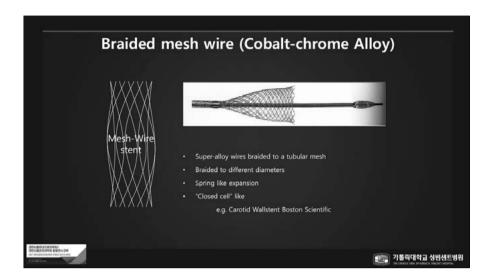


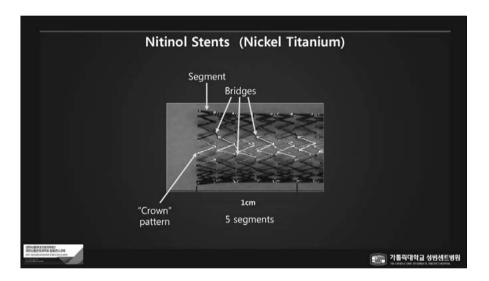


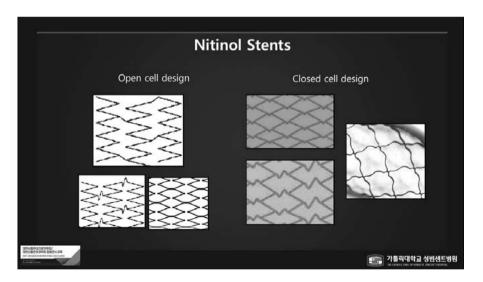


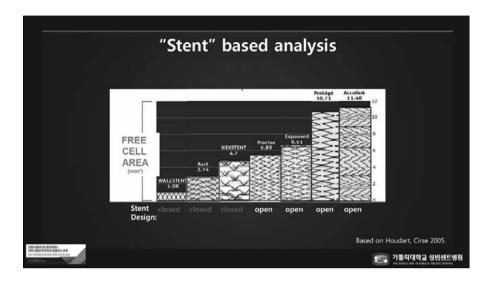


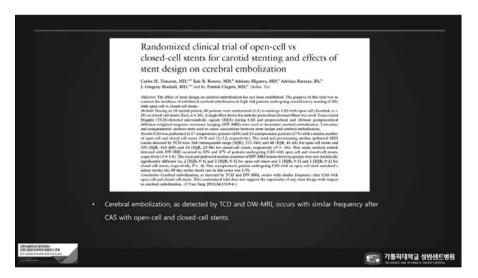


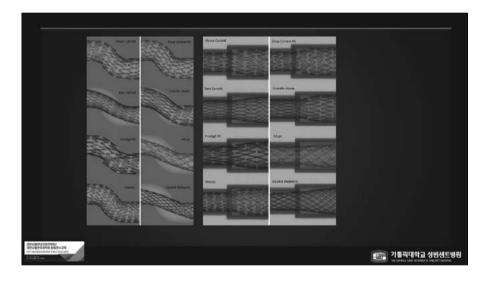


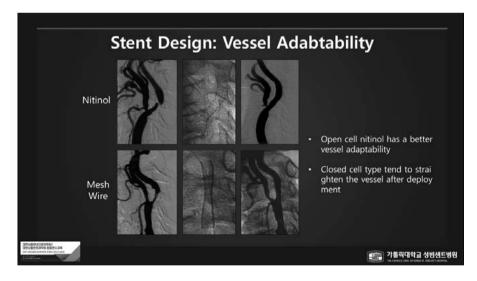


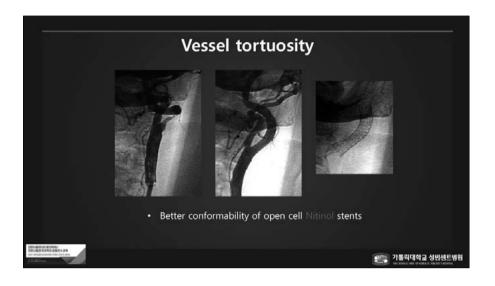


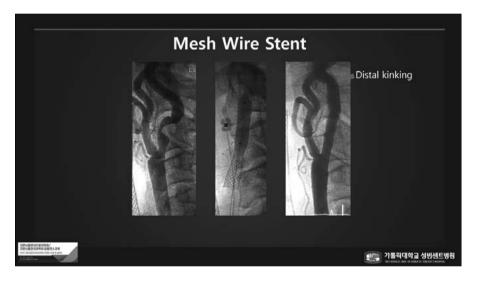




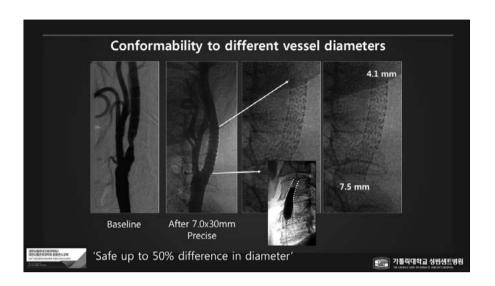


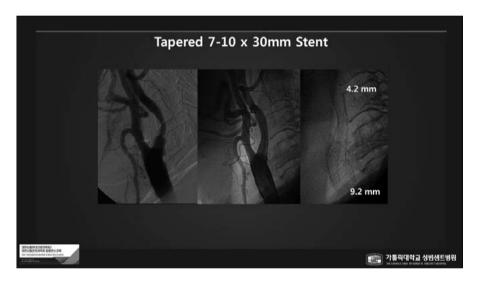


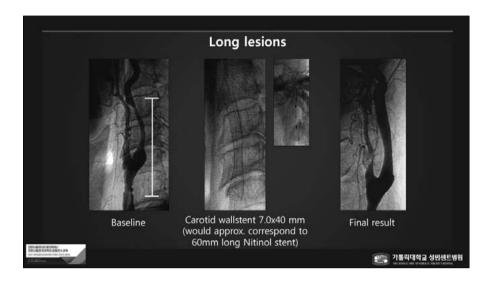


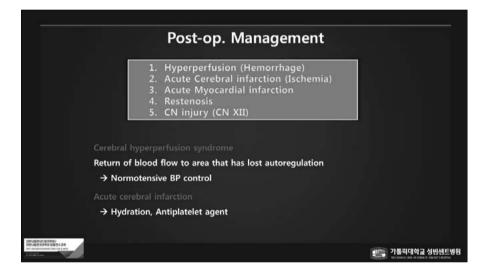


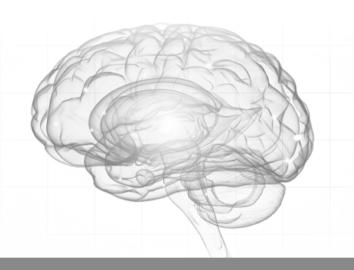












대한뇌혈관내치료의학회/ 대한뇌혈관외과학회 합동연수교육

(2021 대한뇌혈관내치료의학회 추계보수교육 및 ARCS)

Session 3. Expert experience for special situations in LVO

좌장: 임동준(고려대), 장철훈(영남대)

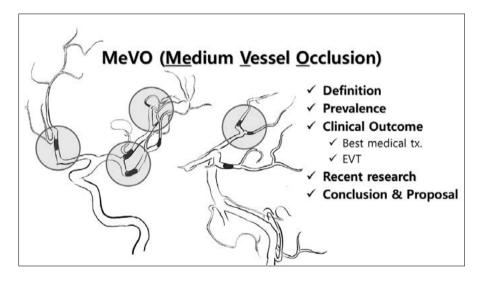
1. Medium Vessel Occlusions

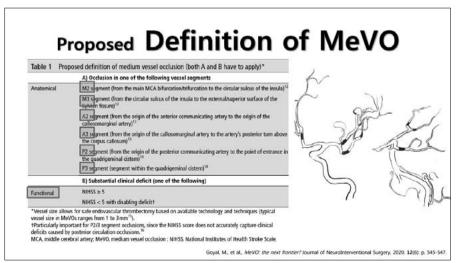
정영진(영남대병원) 하상우(조선대병원)

2. LVO with underlying Intracranial arterial stenosis

홍대영(에스포항병원) 양구현(울산대 강릉아산병원)

3. Acute tandem EC and IC occlusions


박정현(한림대 동탄성심병원) 조용환(동아대병원)


1. Medium Vessel Occlusions

MeVO(Medium Vessel Occlusion)

정영진

영남대병원

Primary, Secondary MeVO

- Primary MeVO
- Secondary MeVO
 - Thrombus fragmentation during EVT
 - Clot migration (after iv tPA)

Goyal, M., et al., MeVO: the next frontier? Journal of NeuroInterventional Surgery, 2020. 12(6): p. 545-547.

Primary, Secondary MeVO

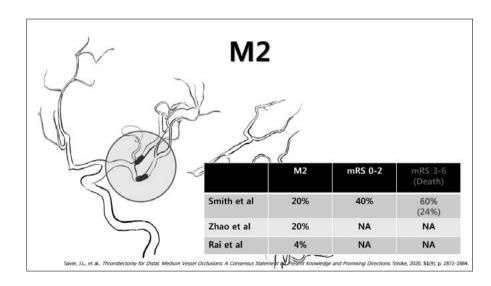
Table 2. Conceptual Differences Between Primary and Secondary MeVOs

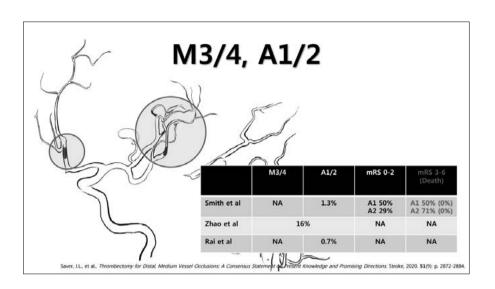
Difference	Primary MeVOs	Secondary MeVOs	Practical implications
Clinical presentation	Less severe symptoms; smaller neurological deficit	Severe symptoms; larger neurological deficit	Possibly higher EVT treatment rates in secondary MeVOs
Extent of ischemia	Smaller; only the territory supplied by the MeVO will be affected	Larger; more proximal territories that were supplied by the initial LVO might progress to infarction as well	Ischemia is likely to be more extensive in second- ary MeVOs, which might translate into worse outcomes and a higher risk of hemorrhage
Clot fragility	Lower	May be higher because there has been fragmentation/migration	Risk of thrombus fragmentation during EVT may be higher in secondary MeVOs
Willingness to treat with EVT	Lower; risks of EVT and gaining endovascular access have to be weighed against estimated benefit in patient with smaller deficits	Higher in EVT-related secondary MeVOs; access has already been established so treatment can be performed immediately	Higher EVT treatment rates for secondary compared with primary MeVOs (over/undertreatment?)
Inclusion in a randomized MeVO EVT trial	Foasible	Chillenging, EVT-related eccendary MeVOs: ran- domization would have to occur on the angiog- raphy table; non-EVT-related eccendary MeVOs: often require repeat vascular imaging, which is not reurinely performed and delays treatment	Lack of equipoise for randomization of secondary MeVOs

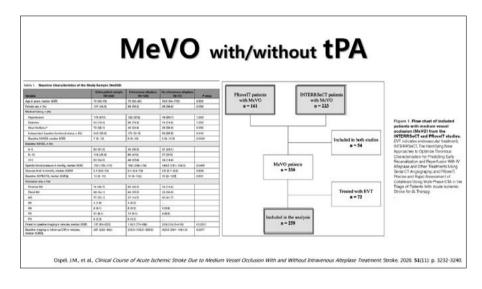
EVT indicates endovascular thrombectomy; and MeVO, medium vessel occlusion.

Goyal, M., et al., Secondary Medium Vessel Occlusions: When Clots Move North Stroke, 2021. 52(3): p. 1147-1153.

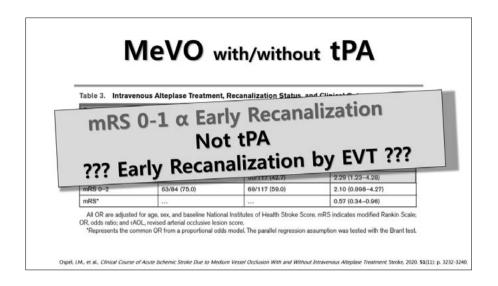
% of MeVO in AIS (6.7~36.0%)

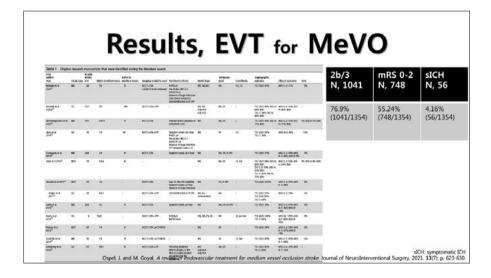

	M	CA		ACA			PCA	
	M2	M3/4	A1	A2	A3-5	P1	P2	P3-5
Among all AIS								
Smith et al	20%	NR	0.3%	1%	NR	1.2%	1.3%	NR
Zhao et al	20%	ACA/I	M3/M4, 1	6%	NR			NR
Rai et al	4%	NR	0.7	1%	NR	2%		NR
Among Ant. circulati	on AIS							
Heldner et al	15%	8%	19	%	NR			


Saver, J.L., et al., Thrombectomy for Distal, Medium Vessel Occlusions: A Consensus Statement on Present Knowledge and Promising Directions. Stroke, 2020. 51(9): p. 2872-288

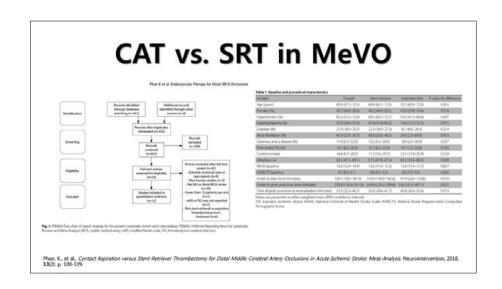

Natural Course of MeVO

	N	ICA		ACA			PCA	
	M2	M3/4	A1	A2	A3-5	P1	P2	P3-5
Among all AIS								
Smith et al	20%	NR	0.3%	1%	NR	1.2%	1.3%	NR
mRS 0-2 mRS 3-6 (death)	40% 60% (24%)		50% 50% (0%)	29% 71% (0%)		13% 86% (25%)	22% 78% (0%)	
Zhao et al	20%	See right		/13/M4, 5%	NR			NR
Rai et al	4%	NR	0.7	7%	NR	2%		NR

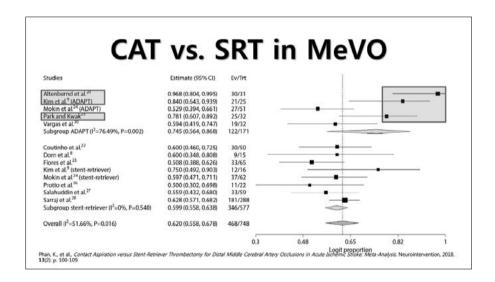

Saver, J.L., et al., Thrombectomy for Distal, Medium Vessel Occlusions: A Consensus Statement on Present Knowledge and Promising Directions Stroke, 2020. 51(9): p. 2872-2884

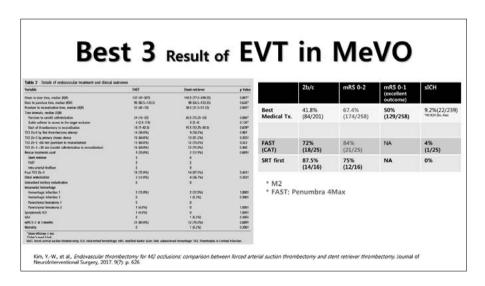


MeVO with/without tPA MeVO, N=258 patients (INTERRSeCT, PRoveIT) - NIHSS 7 (5~12) 2b/3 mRS 0-2 9.2%(22/239) *All ICH (Sx, Asx) 41.8% (84/201) 41.8% (84/201) 67.4% (174/258) Recanalization (2b/3) mRS 0,1 50.0% (129/258) mRS 0.1.2 67.4% (174/258) mRS 6 8.9% (23/258) with tPA, 72.1% (186/258) Recanalization (2b/3) 47.2% (75/159) without tPA, 41.8% (84/281) 21.4% (9/42) Excellent functional outcome (mRS 0-1) α Early recanalization (OR 2.29 [95% CI, 1.23-4.28]) Not tPA (OR 1.70 [95% CL 0.88-3.25]) Every 2 patients with MeVO, Did not achieved excellent clinical outcome (mRS 0-1) with best medical management Early recanalization was strongly associated with excellent outcome, but occurred in < 50% of patients with iv tPA


Early Recanalization by EVT in MeVO

- · Angiographic outcome
- Clinical outcome
- Safety




Table :			ste					w (X	IV	ieta	Analys	is
First Author Year	Study 1994	Research question		N of studies	N with MeVO EVT	NINGS (median/	Technique used	Anglographic sutcome	Olinical outcome	siOi	2b/3	mRS(0-2)	sICH
Phan or al 2018 ²⁸	МА	What are the reperhation ratio in M2 occlusions treated with SR is DAY	Both GR and DA are offsodive in reconsisting M2 occlusions. The literature is skewed by DA being performed sooner after creat of strake compared with SR DVI.	12	835	14	S2 (n=612) vs DA (n=222)	TIO 26G-81% GRO to 87% DAQ TIO 3: 54% GRO w. 57% (DAQ g*-32%)	m85 G-3: 50% (58) is 59% (0A) 59% (0A) 40% (58) is 56% (0A) p*=52%)	DL (53) vs 3% (64) (F-0%)	81(SRT) 87(CAT)	60(SRT) 75(CAT)	6(SRT) 3(CAT)
Saber ri al 2018 ⁴⁷	MA	What are the onglographic results and functional outcome after M2 EVT and how do they company to EVT for LVO?	M2 DVT is technically flexible and sale with high functional independence. There may be a slightly increased risk of KDE.	12	1080	14	SR, DA	THCI 25/2: 81% (F ¹ =20%)	m85 0-2: 59% pf-61%]	10% g ² =75%)	81%	59%	10%
Gen et al ⁶ 2019	MA	What are the anglographic results and functional outcome after M2 EVT and from do they compare to EVT for M1 occlusions?	M2 IVT is technically feasible. Further studies are needed to better characterize the effect of IVT is M2 occlusions.	1	630	ž.		TIC 2b/3-15% (6° not provided)	mf5 0-2: 59% (f ext provided)	0% (f ² not provided)	69%	59%	6%
Chem et al ^a 2017	28	What is the evidence for M2 EVT in the relating filesolary?	M2 EVT results in high functional independence with modes! EOI retes. But given the relatively favorable clinical coame of M2 occlaritions with consensative management, the benefits of EUT exercis	1	60		SR DA	TKU Zarg. 78% (i ² not provided)	m85 9-2; 63% m85 0-1: 80% 0' not provided)	SV6 (F mult provided)	78%	63%	5%

	2b/c	mRS 0-2	mRS 0-1 (excellent outcome)	sICH
Best Medical Tx.	41.8% (84/201)	67.4% (174/258)	50% (129/258)	9.2%(22/239) *All ICH (Sx, Asx)
with tPA	72.1% (186/258)	68.3% (127/186)		
without tPA	21.4% (9/42)	65.3% (47/72)		
EVT for MeVO	76.9% (1041/1354)	55.24% (748/1354)		4.16% (56/1354)
Review Article &	Meta Analysis			
Phan et al. N=835 Overall Stent retriever Aspiration first	82.8% 80.5% 86.8%	62.0% 59.9% 74.5%	44.2% 39.9% 65.6%	5.3% 5.7% 2.6%
Saber et al, N=1080	81%	59%	NA	10%
Kim et al, N=650	69%	59%	NA	6%
Chen et al, N=630	78%	62%	40%	5%

Variable	Overall	Stent-retriever	Aspiration first	P-value for difference
TICI 2b-3 (%)	82.8 (78.5-86	4) 80.5 (76.1-84.3)	86.8 (77.6-92.6)	0.168
TICI 3 (%)	55.8 (47.0-64	3) 53.5 (42.9-63.9)	57.1 (43.3-69.9)	0.700
90-day mRS 0=2 (%)	62.0 (55.8-67	8) 59.9 (55.8-63.8)	74.5 (56.4-86.8)	0.120
90-day mRS 0=1 (%)	44.2 (33.7-55	2) 39.9 (31.5-49.0)	65.5 (47.9–79.8)	0.003
90-day mortality (%)	12.4 (8.9-17.0) 14.7 (11.0–19.4)	4.3 (1.2-14.5)	0.212
All ICH (%)	11.2 (8.5–14.5	11.7 (8.6–15.6)	9.4 (5.0-16.8)	0.530
sICH (%)	5.3 (3.7-7.5)	5.7 (3.9-8.3)	2.6 (0.8-7.7)	0.183
alCH (96)	6.0 (4.2-8.3)	6.6 (4.1-10.5)	4.1 (1.6-9.9)	0.378
Distal embolization (%)	5.7 (1.8-17.2	5.9 (0.6-39.4)	4.6 (0.9-20.0)	0.598
Dissection or perforation (9	6) 3.3 (1.7-6.5)	3.8 (1.6-8.7)	1.9 (0.5-7.2)	0.344
	2b/c	mRS 0-2	mRS 0-1 (excellent outcome)	sICH
Best Medical Tx.	41.8% (84/201)	67.4% (174/258)	50% (129/258)	9.2%(22/239) *All ICH (Sx, Asx)
Phan et al. N=835 Overall Stent retriever Aspiration first	82.8% 80.5% 86.8%	62.0% 59.9% 74.5%	44.2% 39.9% 65.6%	5.3% 5.7% 2.6%

M2, M 250400 AND 25040 A

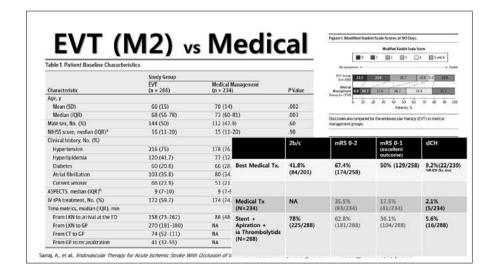
* Frontline ADAPT: Penumbra 3Max

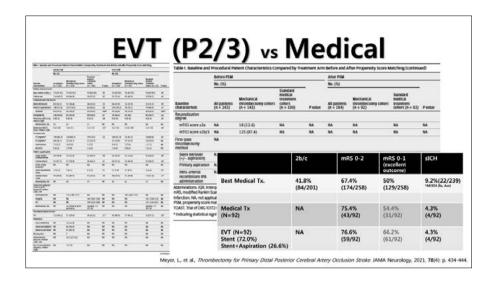
Alterbernd, I., et al., Frontline ADAPT therapy to treat patients with symptomatic M2 and M3 occlusions in acute ischemic stroke: initial experience with the Perumbra ACE and SMAX reperfusion system. Journal Neurolatens

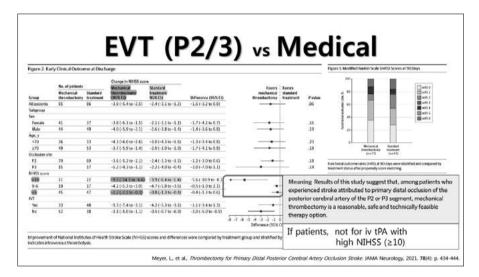
Best 3 Result of EVT in MeVO

Table 3. Demographics and outcomes of MAT in patients with solitary M2 occlusion

Outcome parameter		p value*
Final TICI [n (%)]		
0-2a	5 (16)	
2b	12 (37)	
3	15 (47)	
NIHSS (mean±SD)		< 0.0001
Baseline	10.9±5.1	
Discharge	4.3±4.0	
mRS ≤2 [n (%)]		< 0.0001
Baseline	4 (13)	
At 90 days	25 (78)	

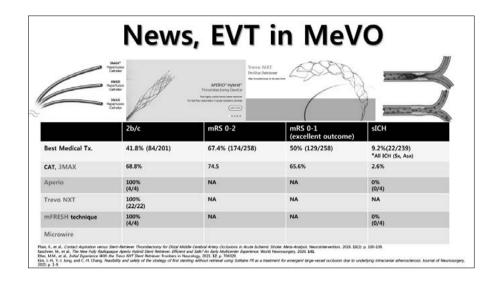

Paired Litest. MAT : manual aspiration thrombotomy, TiCl : Thrombolysis in Corebral infarction, NIHSS : National Institutes of Health Stroke Scale, mRS : modified Rankin scale

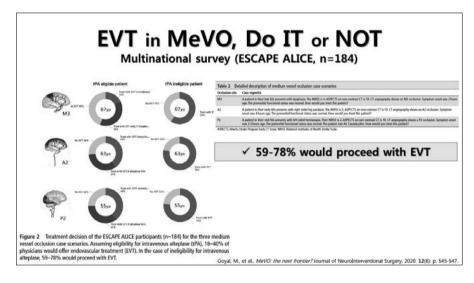

| 2b/c | mRS 0-2 | mRS 0-1 (credient outcome) | sICH (credient outcome


* M2

* Manual Apiration: Penumbra 4Max

Park, J. and H. Kwalk, Adanual Aspiration Thrombectomy Using Penumbra Catheter in Patients with Acute M2 Occlusion: A Single-Center Analysis. Journal of Korean Neurosurgical Society, 2016, 59(4): p. 352-356.



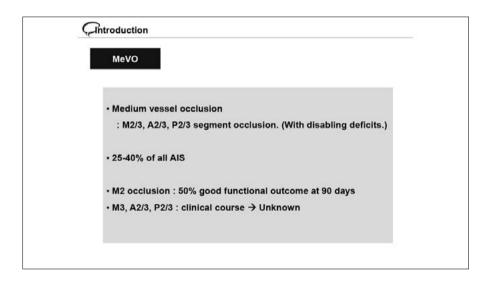


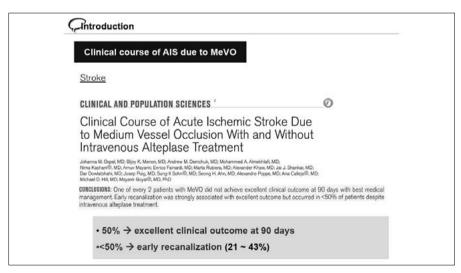
EVT for MeVO

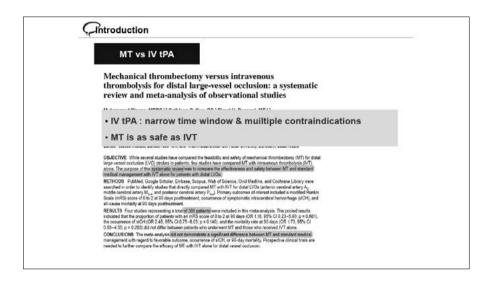
- Safety Outcome
 - higher than LVOs
 - Similar(???), Not inferior versus Best Medical Treatment
- Special symptoms, which not captured NIHSS, mRS
- abulia d/t A2/3 occlusion alexia, agraphia d/t M2/3 occlusion quadrantanopia d/t P2/3 occlusion
- For Better Outcome
 - Reduce Procedural Related Complications
- Which is Better, for reduce periprocedural complications
 - Procedure Attitude
 - Techniques, CAT >SRT, or Combined, or Others
 - **Devices Selection**
 - aspiration catheter, retriever stent, microwire

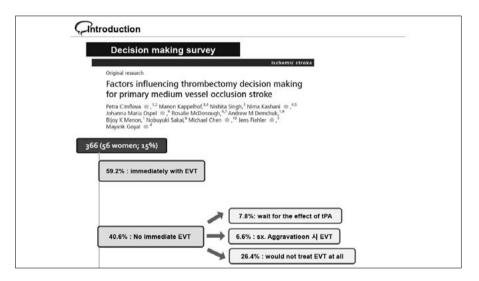
Conclusion and Future

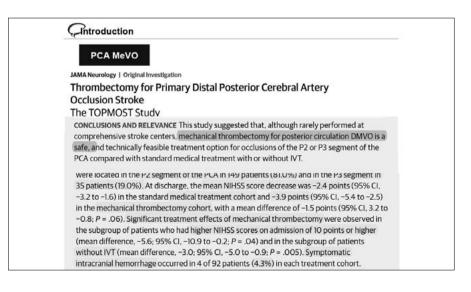
MeVO,

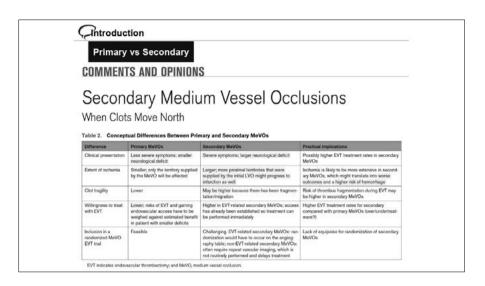

- being increasingly recognized as a target for EVT
- iv tPA, standard treatment of choice (?)
- (Not), eligible for iv tPA,
 - ✓ limited but promising evidence for MeVO EVT
 - √ Higher NIHSS, slightly aggressive
 - ✓ Lower NIHSS, a bit defensive
 - √with well selected good devices

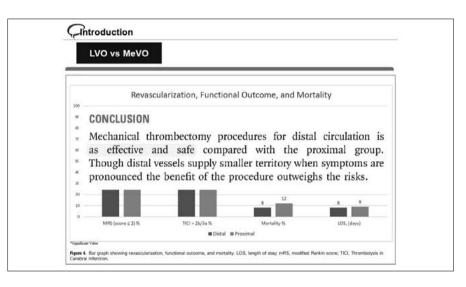

1. Medium Vessel Occlusions

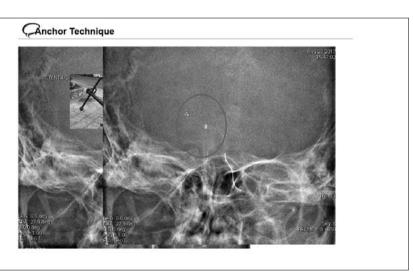

Medium Vessel Occlusion(MeVO)

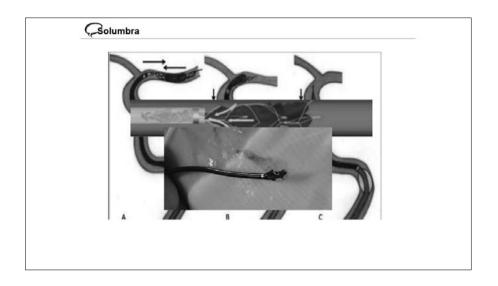

하상우

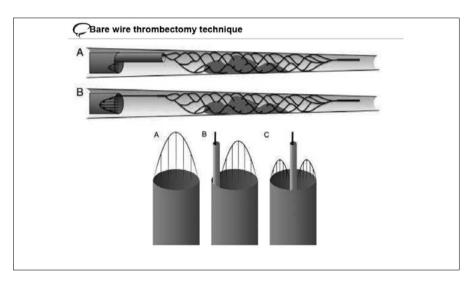

조선대병원

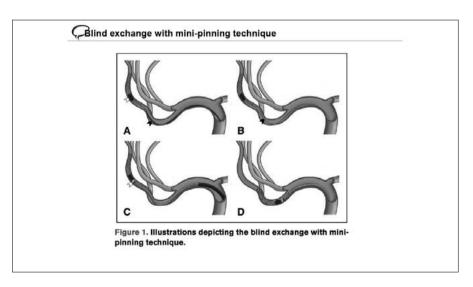


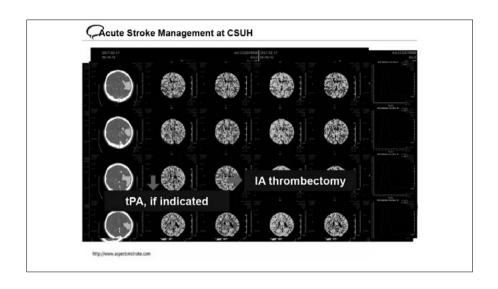


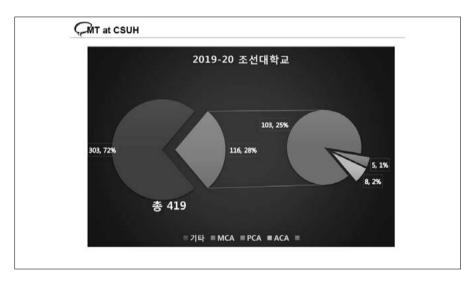




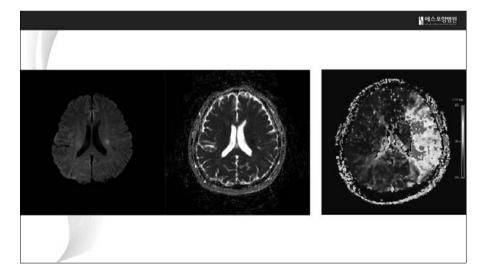




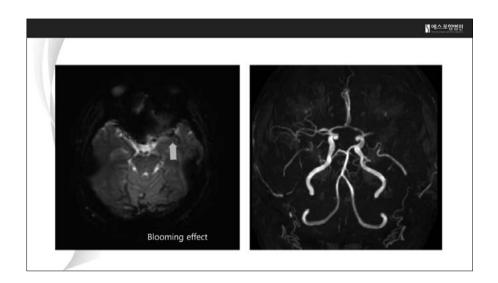


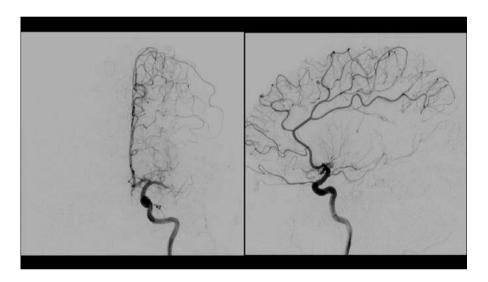


2. LVO with underlying Intracranial arterial stenosis

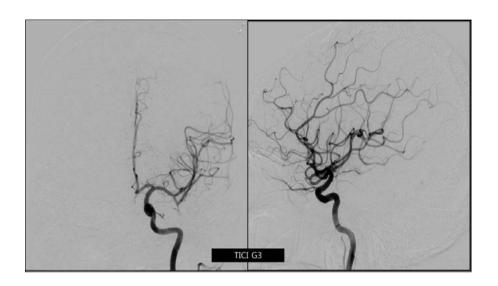

Trouble IAT: ICAS - LVO

홍대영

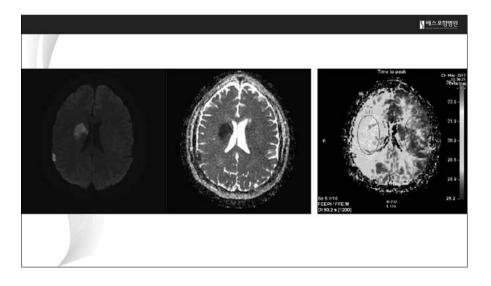

에스포항병원

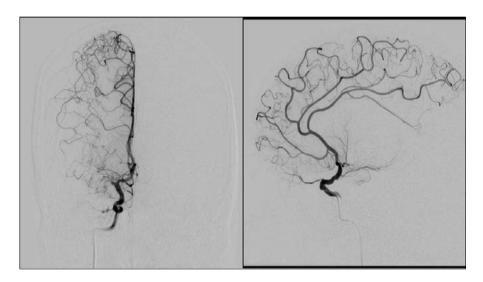

Case 1

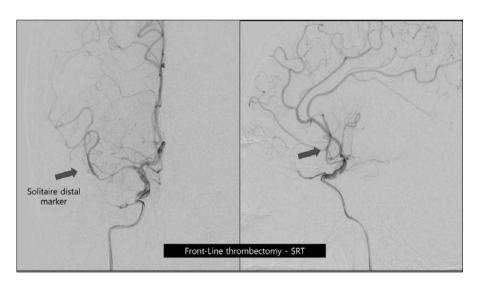
- 53/M
- Rt side weakness (arm G4/leg G4)
- · Last normal time: 1hr30min
- P/Hx: angina + HL 아스피린 복용중
- Smoking(+)
- NIHSS 4점
- EKG : U-R

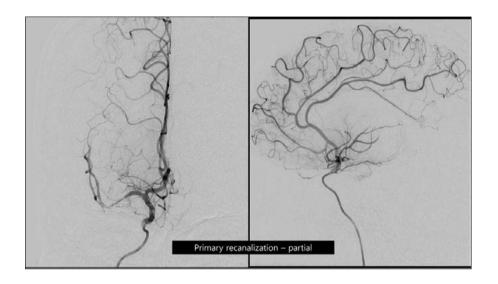


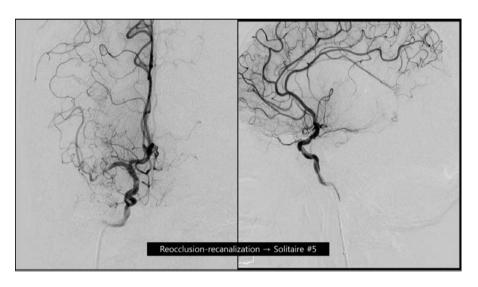
S 에스포항병원

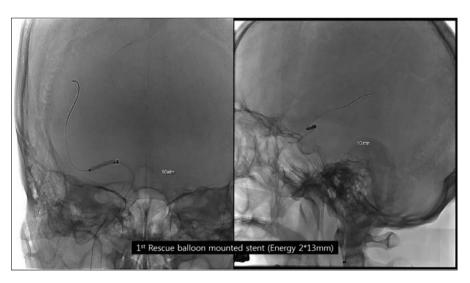


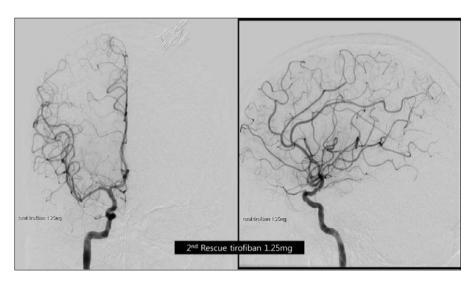

Case 2

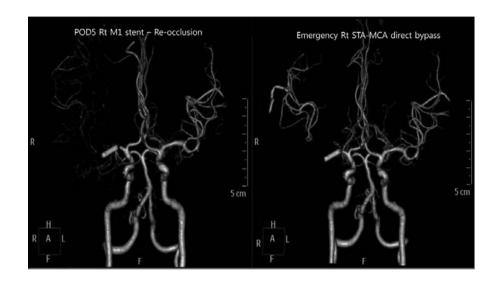

- 2017.5.25
- 45/M
- Lt side hemiplegia (arm G1/leg G1)
- Awaken infarction : 3hr40min
- P/Hx : HTN + HL
- Smoking(+)
- NIHSS 12점
- EKG : U-R

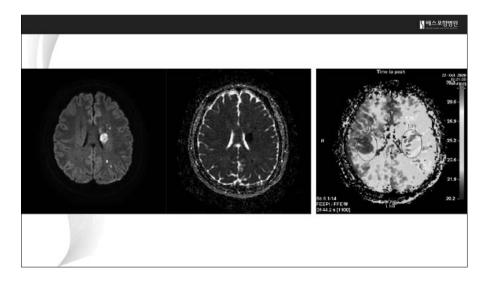


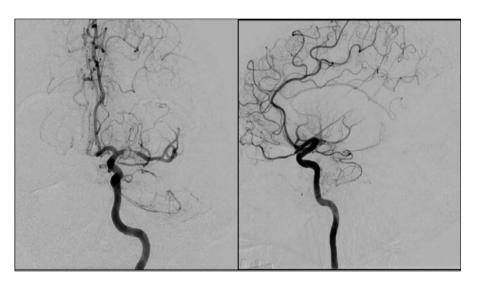

S에스 포항병원

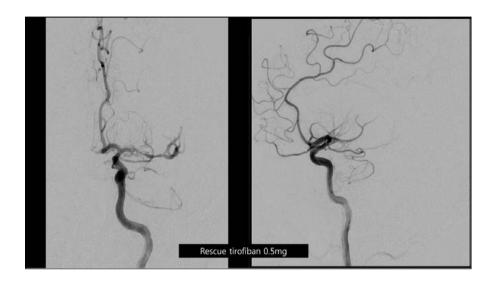


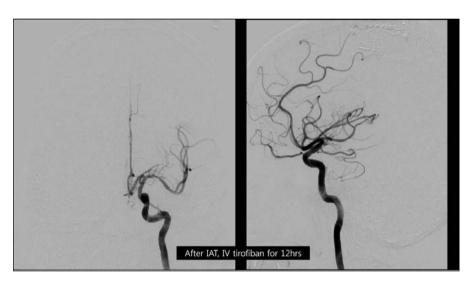


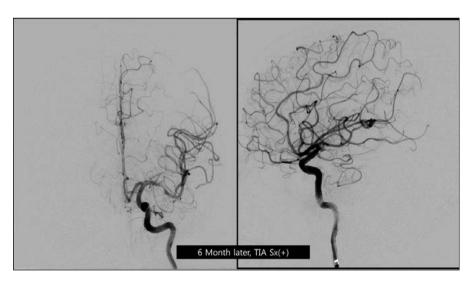


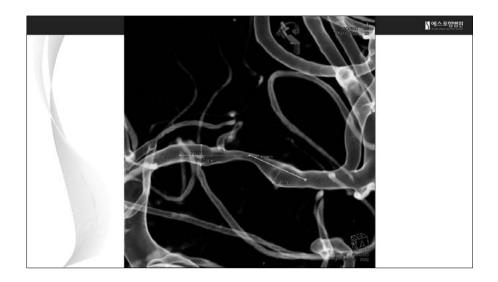


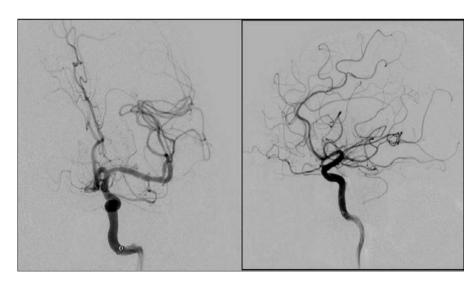



Case 3 • 2020.10.27 • 50/M • Rt side weakness (arm G4/leg G4) • Awaken infarction : 5hr40min • P/Hx : HL • Smoking(+) • NIHSS – 5점 • EKG : U-R







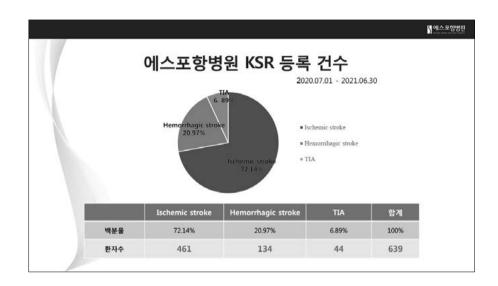


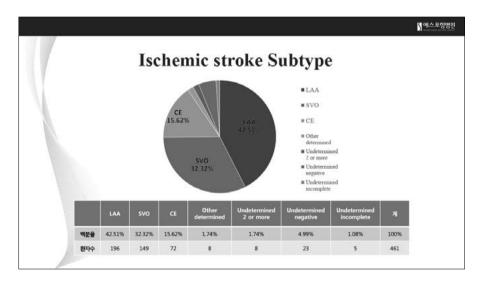
S에스 포항병원

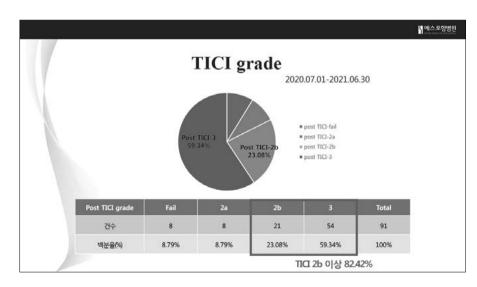
ICAS - LVO vs Embolic

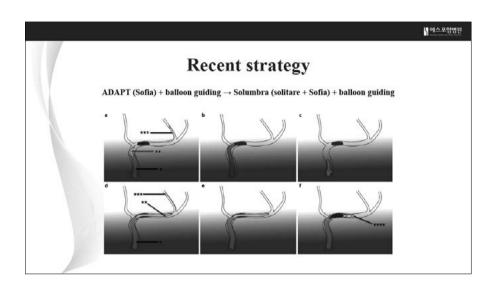
- Frequent re-occlusion or flow stagnation (ex 65% vs 3.3%)
- Use of a different front-line thrombectomy technique (SRT vs CA)
- · More require rescue treatments
- balloon, stent, tirofiban etc
- · longer procedure time and poor outcomes
- · Detect the clues of ICAS-LVO in Pre or intra-procedure
- · Need for new fast strategy

《에스 포항병**원**


ICAS-LVO: Incidence


• 5~36% in EVT eligible patients (ASIA: 15-20% vs Western: 5-8%)


TABLE 1 | Frequencies of intracranial atherosolerosis-related large vessel occlusion (ICAS-LVO) in endovascular treatment-eligible patients


Study	Definition of ICAS-LVO	Nation of study population	Anterior or posterior circulation	Total number of patients included	ICAS-LVO%
Matias-Guiu et al. (29)	TOAST classification	Spain	Both	88	17.0
Kang et al. (30)	Fixed focal stenosis [®]	Konsa	Both	132	30.3
Gascou et al. (19)	Intracranial stenosis	France	Both	144 ^b	5.5
Al Kasab et al. (16)	Significant fixed focal stenosis	US	Both	435	8.3
Lee et al. (24)	Significant fixed focal stenosis	Korea	Both	158	15.2
Lee et al. (23)	Significant fixed focal stenosis	Korea	Both	53 ^c	17.0
Yi et al. (26)	Significant fixed focal stenosis	China	Both	56	21.8
Yoon et al. (28)	Significant fixed focal stenosis	Korea	Both	172	22.9
Jia et al. (20)	Significant fixed focal stenosis	China	Anterior	140	34.0
Kim et al. (22)	Significant fixed focal stenosis	Korea	Posterior	51 ^d	37.3
Back et al. (31)	Truncal-type occlusion (by DSA)	Korea	Both	259	12.4
Back et al. (18)	Truncal-type occlusion (by CTA)	Korea	Both	238	18.1

Front. Neurol. 10:298, Baek J-H and Kim BM (2019)

Our Hospital Data

• 기간 : 2019.1.1~2021.6 (30개월)

• IAT : 214 case

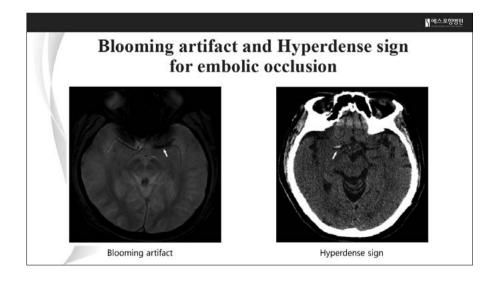
	ICAS-LVO	Medium vessel occlusion	Tandem lesion
건수	48 case	68 case	61 case
백분율(%)	22.4%	31.7%	28.5%

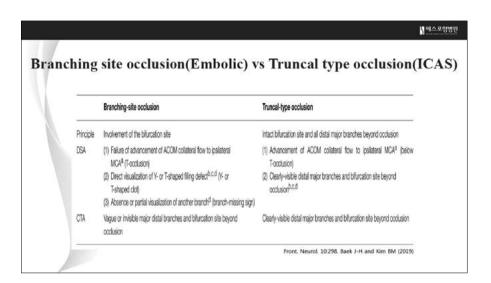
241921

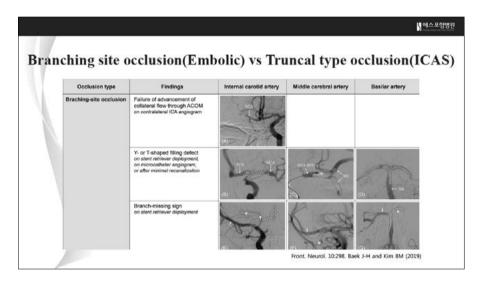
$\label{eq:local_local_local} ICAS-LVO \\ : clinical characteristics compare to embolism related occlusion$

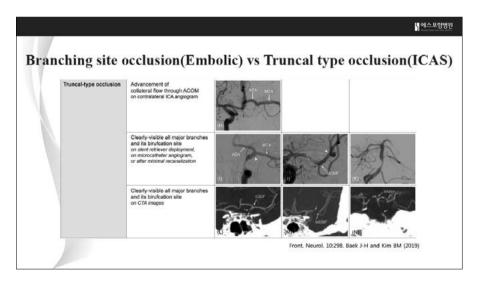
- . cimical characteristics compare to embonsin related occ
- More frequent in Male
- ***** Better collaterals *****
 - lower NIHSS
 - lower infarction severity
 - much higher mismatch ratio
- · Current smoking
- · Hyperlipidemia
- DM controversy

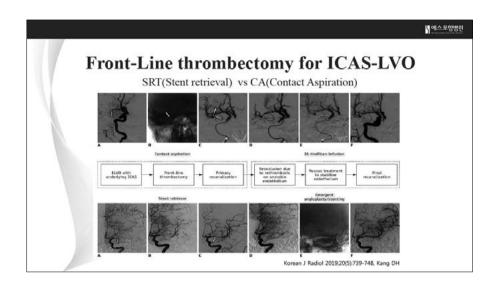
[에스포항병원

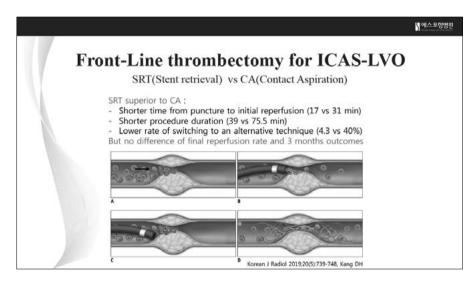

에스 포항병원

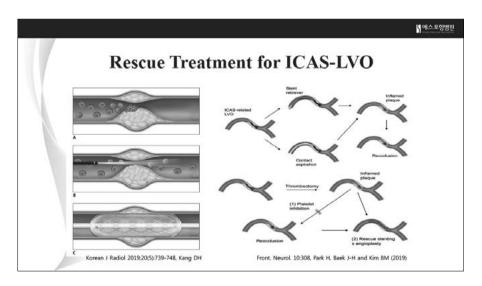

ICAS-LVO

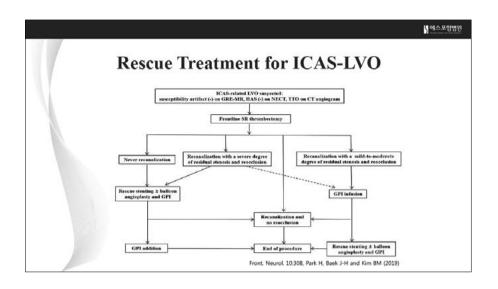

: clinical characteristics compare to embolism related occlusion

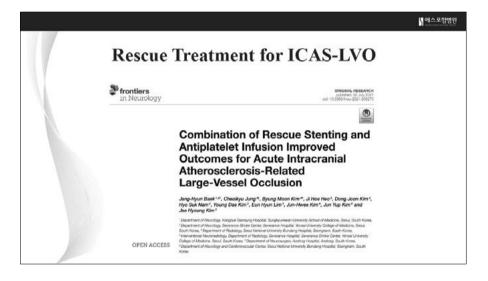

- ICAS "Response to Injury Theory"
- Most common involve vessel: proximal and middle M1 > BA > pc-ICA > VA
 - frequent in post circulation
- · Smaller clot burden
- · Frequent re-occlusion or flow stagnation
 - platelet aggregation

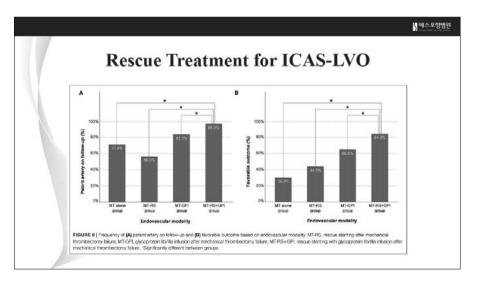

	ICAS – LVO: D	Dx Clu	es
	Surrogate markers	ICAS-related	Embol
Before	Atrial fibrillation, 2017 (13)	+*	+++
starting EVT	Susceptibility artifact on MR gradient echo image, 2015 (28)	+	+++
	Hyperdense artery sign on NECT, 2017 (29)	+	++
	Truncal-type occlusion on CT angiography, 2017 (13), 2016 (14)	+++	+
During the EVT	Truncal-type occlusion, 2016 (7), 2017 (13), 2016 (14)	++++	+
	Residual stenosis, 2014 (8), 2015 (16), 2018 (23)	++++	+

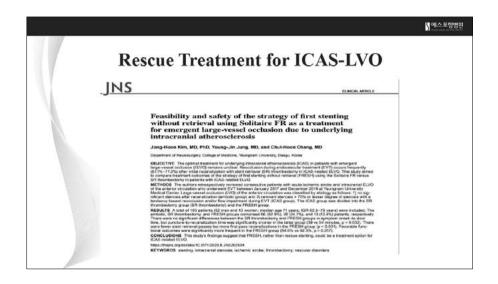


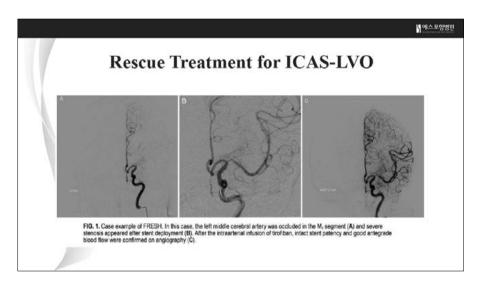


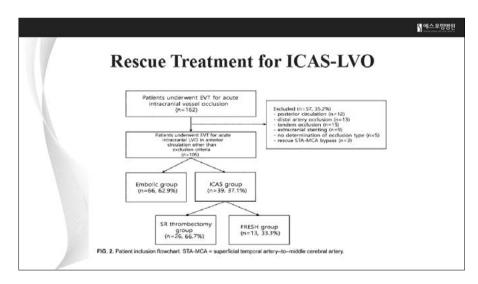


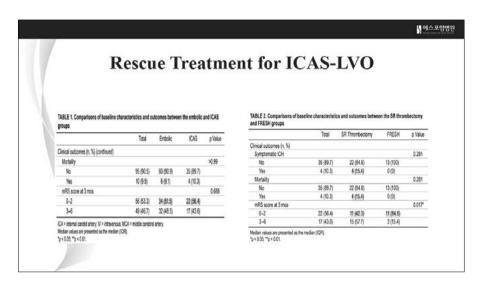












[에스 포항병원

Take home massage

- 시술 전 혹은 시술 중 ICAS-LVO clue 확인
- ICAS-LVO 의심되면 Front-Line은 stent retrieval 먼저 선택
- EVT는 최대한 간단하게 여러 번 시도하지 말고 다른 방법을 고민
- Rescue treatments 후에는 반드시 20min delay Angio 확인
- Postop manage시 DAPT + high dose statin 사용
- 주기적인 F/U

2. LVO with underlying Intracranial arterial stenosis

Direct stent angioplasty for intracranial atherosclerotic-related large artery occlusion

양구현

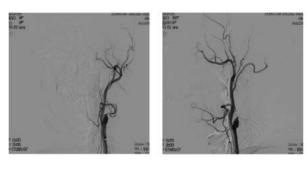
울산대 강릉아산병원

최근 여러 연구를 통해 기계적 혈전 절제술(Mechanical thrombectomy, MT)이 전방 순환계의 두개내 대동맥 폐색(Large artery occlusion, LAO)으로 인한 급성 허혈성 뇌졸중(Acute ischemic stroke, AIS) 환자를 위한 가장 효율적이고 안전한 치료법 중 하나임은 보편적으로 받아들여 진 상태이다.

그러나 이전 많은 연구들은 대부분 서양인들을 대상으로 한 연구들 이었다. 서양인들의 뇌졸중 원인은 심장 또는 경동맥병변에서 기인한 색전증이다 (Embolic LAO). 이에 대해 스텐트 리트리버 또는 접촉식 흡인의 현재 기술은 색전을 제거하고 성공적인 재개통을 달성하는 데 매우 효과적이며 색전을 제거하고는 원인에 따라 항 응고제 또는 항 혈소판제를 적절히 유지함으로써 치료의 완결과 이차적 예방을 할 수 있다. 그러나 우리 나라를 비롯한 동양인의 경우 근본적인 두개내 죽상동맥경화증 관련 폐색 (Intracranial atherosclerotic—related oc—clusion, ICAS—O)이 서앙인보다 더 많은 비율을 차지하는 사실에 기반할 때 다음과 같은 특수성을 늘 염두해 두어야 한다. ICAS—O는 embolic LAO에 비해 실질적인 개통율이 낮고 재폐색율이 높은 특성을 보이면서 스텐트 리트리버에 대해 불응성을 보이는 경우가 많다. 심한 잔류 협착은 초기 재관류를 달성한 후 혈소판 응집을 쉽게 일으키고 종종 재개통을 위한 치료를 만들기 쉽다는 점까지 감안하면 특히 스텐트를 이용한 두개내 혈관 성형술에 대해서 좀더 적극적인 고려를 해보는 것도 중요하다.

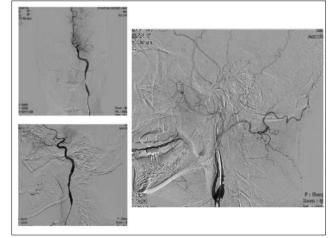
두개내 스텐트 혈관성형술의 주요 단점에는 1) 복잡한 시술, 2) 긴 시술 시간, 3) 인접 perforating artery 폐쇄, 4) 스텐트 내혈전 등이 있다. 조기 항혈소판 투여는 영구적 두개내 스텐트 삽입술로 인한 두개내 출혈 합병증과 그에따른 기능 회복의불리한 결과를 증가시킬 수 있다고 가정할 수 있지만 실제 스텐트 삽입술의 효능 및 안전성 문제에 대한 판단에 근거가 의미 있는 메타 분석을 허용하기에도 현재 문헌에 대한 연구가 너무 적다.

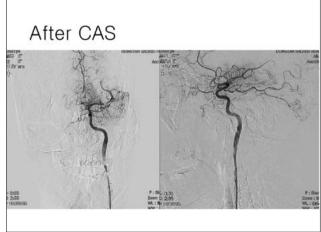
따라서 스텐트를 이용한 두개내 혈관성형술을 MT에 실패한 LAO 환자에게 제한적으로 실행하는 rescue treatment에 의미를 좀더 두고 볼지 아니면 개통 후 잔류 협착에 대해서도 적극적으로 넓게 적용을 할지 판단을 위해서 더 엄격한 전향적 연구가 필요하다.

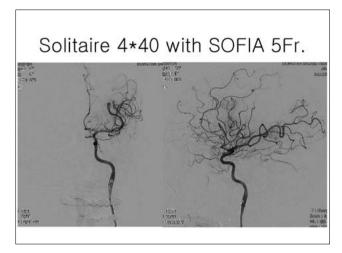

3. Acute tandem EC and IC occlusions

Acute Tandem EC - IC occlusions

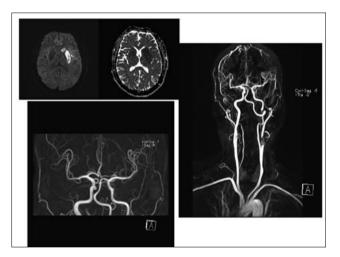
박정현

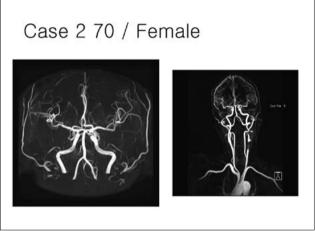

한림대 동탄성심병원

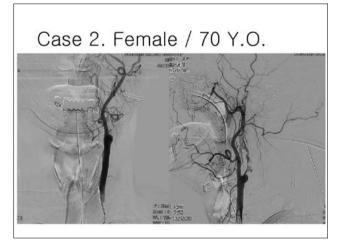

Case 1. Male / 58 Y.O.

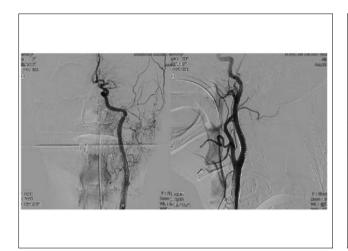


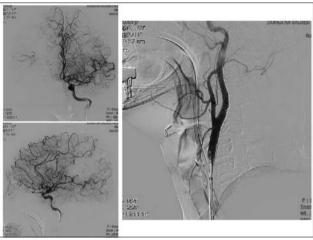
Rt. ICA Angiogram











3. Acute tandem EC and IC occlusions

Acute Tandem occlusion

조용환

동아대병원

Introduction

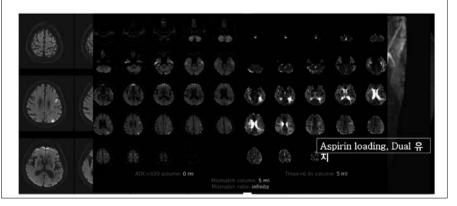
- Tandem Lesion: 10% ~ 20% of all LVO stroke, poor response to IV-tPA (recanalization rate 9%)
 - > MT (recanalization rate 78~88%)
- · Cervical ICA steno-occlusion lesion: Technical challenge
 - : Two treatment strategies
 - c-ICA stenting + antithrombotic therapy
 vs intracranial mechanical thrombectomy alone (± angioplasty)
 - Intracranial first vs Extracranial first
 - : Tx is driven by individual, institutional practice

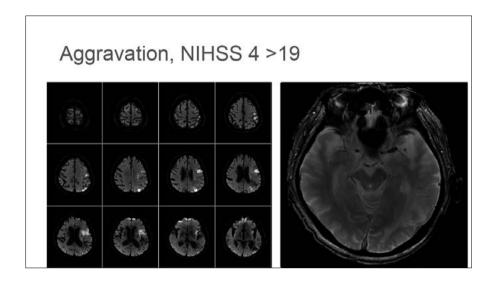
Stent vs No stent

- · Acute c-ICH stenting appears feasible...
 - higher rate of ICH
 - risk of in-stent thrombosis
 - iatrogenic artery to artery embolization
 - hemodynamic instability
- · No stent approach
 - high risk of recurrence and infarct progression

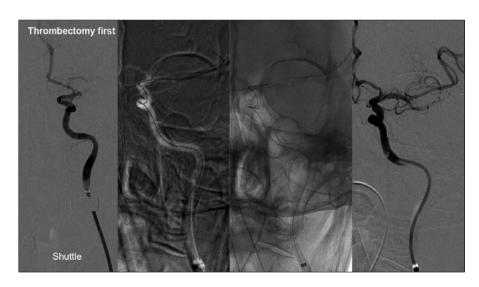
Results—Responses from 162 stroke experts were analyzed; most were stroke physicians (n=65, 40.1%) and neurointerventionalists (n=74, 45.7%), from Canada (n=95, 58.6%), the United States (n=42, 25.9%), and other countries (n=25, 15.4%). Over half (n=96, 59.3%) of respondents consider acute stenting of the cervical internal carotid artery as a treatment option, whereas 40.7% (n=66) would never use it. Most respondents (n=113, 69.8%) agree that there exists uncertainty about the optimal acute management of patients with tandem occlusion. A majority (n=88, 54.3%) of physicians surveyed would include patients in a randomized trial addressing this question.

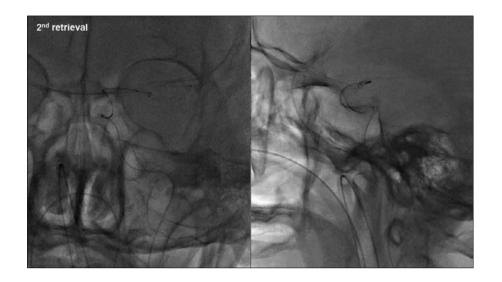
Stroke. 2019 May;50(5):1254-1256. doi: 10.1161/STROKEAHA.118.023758.

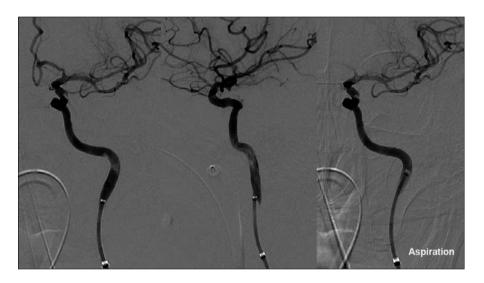

In DAUH

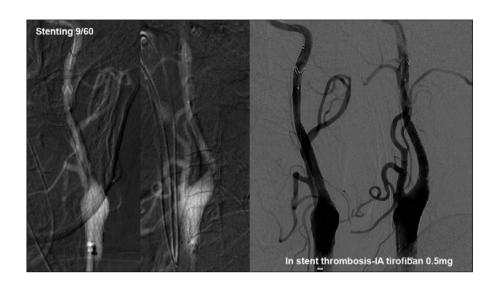

- · Stenting vs No stent
- Intracranial first (Retrograde) approach vs Extracranial first (Anterograde)approach
 Depends on an operator, or a situation

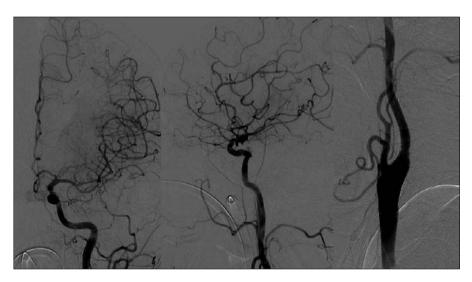
Case 1: Intracranial first approach

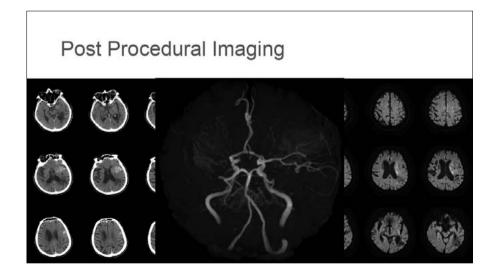

- M/71
- . C.C: Rt. side weakness
- 내원 5일전 부터 우측손에 힘이 빠짐. 내원 전날 증상 악화
- Past Hx (+) oCVA, HTN, DM
- Initial BP 120/80, Af(-)
- Rt side motor Gr II, NIHSS 4


Initial DWI, MRA, Perfusion image







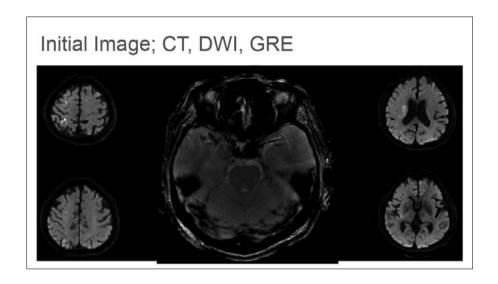


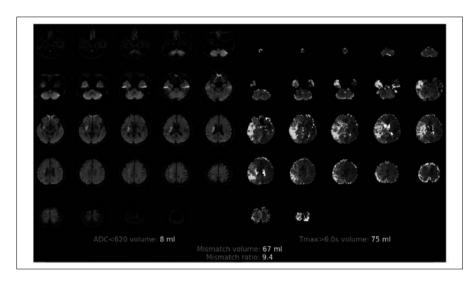
Result

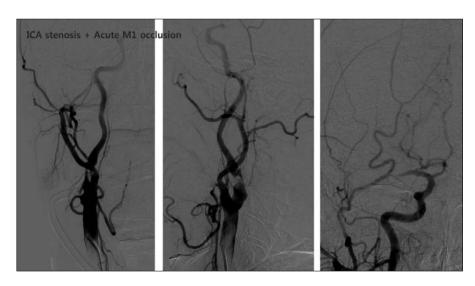
- · Procedural time: 68 mins
- · 6 Fr Shuttle-5Fr Sofia-Trevo stent
- · Protégé 9/60, Submarine Balloon 5/30, Emboshield
- · mTICI 3
- · Hemorrhagic transformation(+)
- NIHSS 7: 16

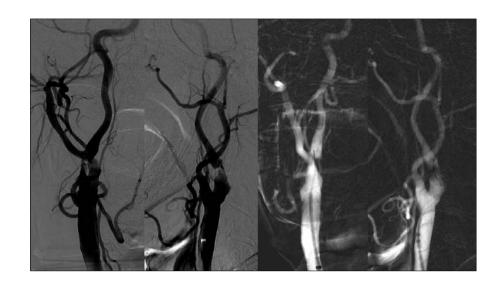
Intracranial first approach

Advantage

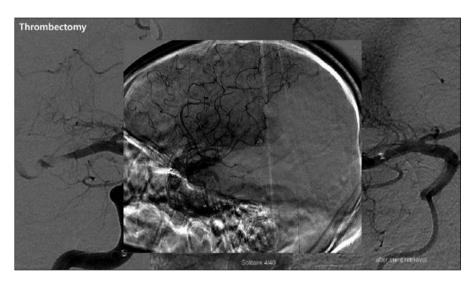

- · Shorter intracranial recanalization time
- · Avoidance of potential snagging of the retrieval stent with carotid stent

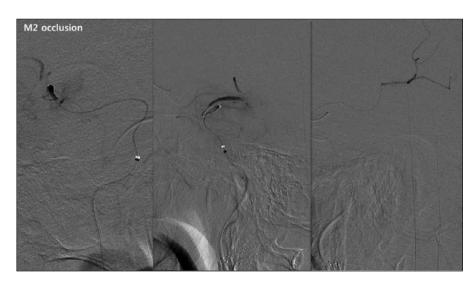

Disadvantage

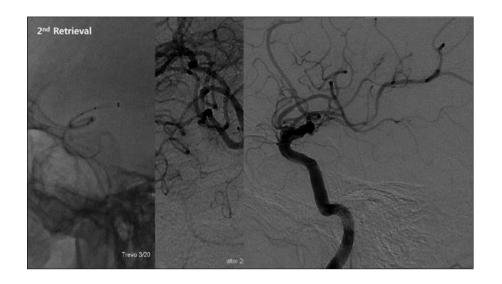

- · Recurrent embolization during stent deployment
- In some cases, specific technical circumstances may mandate an anterograde approach to gain access to the intracranial circulation

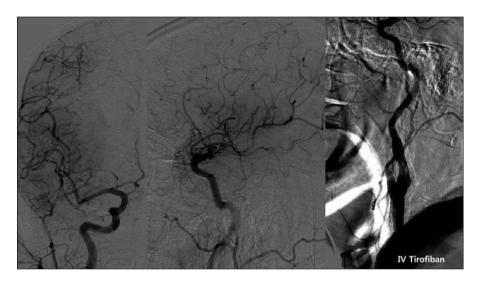

Case 2: Extracranial first approach

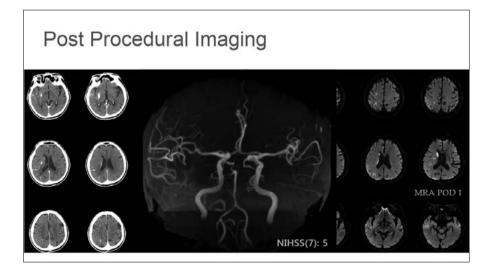
- M/77
- C.C: Lt. side weakness, Dysarthria, Mental change
- 택시 운전사, 14:59 차량이 가드레일 들이박은 채로 발견
- · Past Hx: HTN, DL
- · LNT: 07:40/ FFT: 14:59/ Arrival Time: 15:48
- Initial BP 160/90, Af(-)
- Lt side motor Gr II, NIHSS 16
- tPA(-)











Result

- · Door to Puncture time: 127 mins
- · Procedural time: 155 mins
- · 6 Fr Shuttle-5Fr Sofia
- · Submarine balloon 4/30, Protégé 9/60, Solitaire 4/40, Trevo 3/20
- · migration to disatal ACA > No infarction
- · mTICI 2b

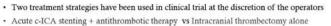
Extracranial first approach

- · Jailing the friable plaque > preventing shower of emboli
- · Restoration of antegrade blood flow
- > assist in thrombolysis
- > Stabilization of the ICA stenosis
- > up to 26% of pts; partial or complete resolution of distal occlusion
- · Create angiographically visible access

Disadvantage

- · Restoration of antegrade blood flow > migration
- · Potential hemodynamic instability d/t baroreceptor activation

AHA/ASA Guideline


7. Treatment of tandem occlusions (both extracranial and intracranial occlusions) when performing mechanical thrombectomy may be reasonable.

B-R

Tandem occlusions were included in recent endovascular trials that showed benefit of mechanical thrombectomy over medical management alone. In the HERIMES meta-analysis, 122 of 1254 tandem occlusions (RR, 1.81 [95% CI, 0.96-3.4]) and 1132 of 1254 nontandem occlusions (RR, 1.71 [95% CI, 1.40-2.09]) were reported compared with medical management. 189 In THRACE, 24 of 196 tandem occlusions (RR, 1.82 [95% CI, 0.55-6.07]) and 172 of 196 nontandem

- · Absence of robust randomized trial data
- · No firm recommendation about optimal management
- · Treatment decision are often complex, and strategies vary according to clinical, anatomic, and technical considerations in addition to physician preference.

achieved an mRS score of 0 to 2, 13.8% had parenchymal hematoma, and 13.2% were dead. Multiple retrospective reports detail the technical success of mechanical thrombectomy for tandem occlusions but do not provide specifics on comparative approaches. No conclusions about the optimum treatment approach for patients with tandem occlusions are therefore possible

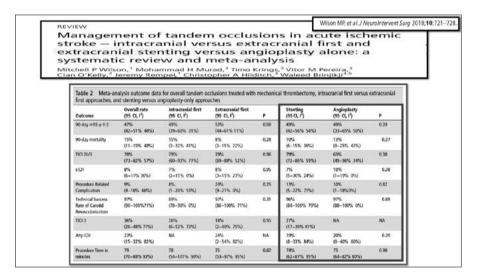
> intracranial hemorrhage vs Ischemic stroke progression or recurrence

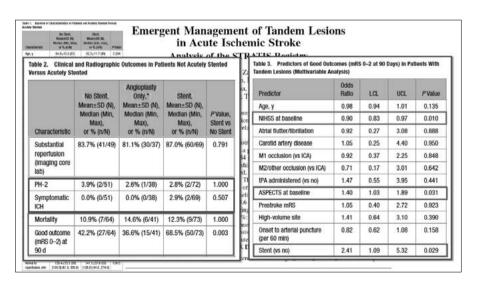
Postulated advantages of each treatment approach for patients with tandem lesions (acute stent placement versus no acute stent placement)

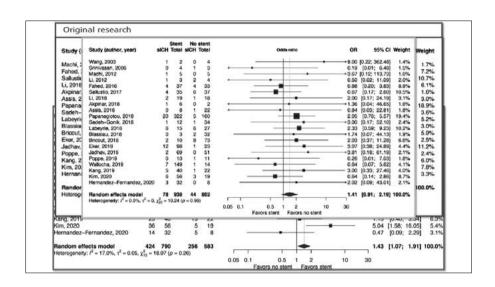
Potential Advantages of Acute Stent Placement

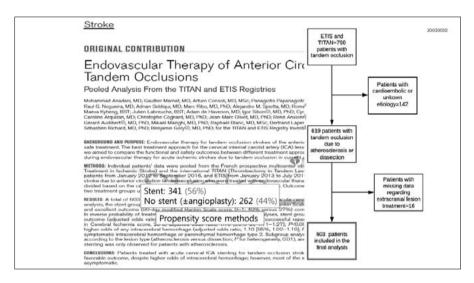
Treatment of the causative embolic lesion and lower risk of stroke recurrence improvement of cerebral perfusion with potential attenuation of infact progression

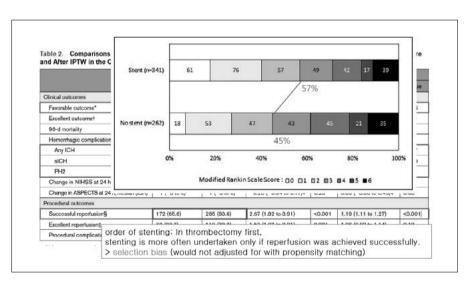
Contribution to spontaneous intracrarial clot lysis

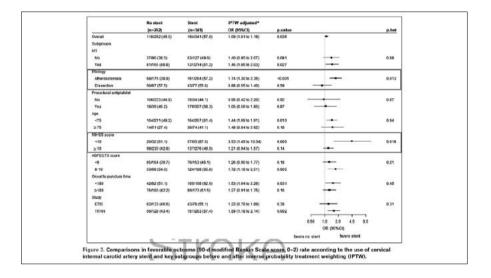

Contribution to spontaneous intracrarial clot lysis


Contribution to spontaneous intracrarial clot lysis


Avoids delays in intracranial recansilization (if stent placement before thrombscoins)


Lower risk of procedural bradycardia and hypotension from carotid barracreoptor activation with stent deployment


Tandem Carotid Lesions in Acute Ischemic Stroke: Mechanisms, Therapeutic Challenges, and Future Directions. A Y Poppe at al. AJNR Am J Neuroendiol . 2020 Jul;41(7):1142-1148.



Lack of benefit of stenting

- 1. Dissection
- : more favorable natural history
- 2. NIHSS ≥10
- : disabled outcome > Recurrence may not alter their level of 90-day mRS
- 3. Large infarction core volume
- : high risk of symptomatic ICH

Factors may favor acute stent placement

	Favours no stenting	Favours stenting			
ICA lesion etiology	Dissection	Atherosclerosis			
Infarct core volume	Large infarction ASPECTS	Small inforethigh ASPECTS			
Quality of final intracranial recanalization	Neue or poer (mTICI 6-1)	Complete or near-complete (mTICI 2b-3)			
Collateral circulation via	Good collaterals/complete circle of Willis	Poor collaterals/incomplete			
Dynamic ICA re-ecclusion or anglography	No active re-acclusion	Active re-occlasion			
Use of IV thrombolysis	Yes	No			
Systemic bleeding risk	Higher risk	Lower sisk			
Indication for long-term	Present	Abicut			

Tandem Carotid Lesions in Acute Ischemic Strok techanisms, Therapeutic Challenges, and Future Direction

Wilson MP, et al. J NeuroIntervent Surg 2018;10:721-728. Management of tandem occlusions in acute ischemic extracted is tandem occusions in acute iscri-stroke – intracranial versus extracranial first and extracranial stenting versus angioplasty alone: a systematic review and meta-analysis Table 2 Meta-analysis outcome data for overall tandem occlusions treated with mechanical thrombectomy, intracranial first versus extracranial first approaches, and stenting versus angioplasty-only approaches Intracranial first (95 Cl, I²) Extracranial first (95 Cl, I²) Stenting (95 CI, I^a) Angioplasty (95 Cl, I²) 47% (42-51% 48%) 49% (39-60% 31%) 0.39 (33-65% 50%) 15% (11-19% 48%) 15% (3-32% 41%) 8% (3-15% 22%) 10% (6-15% 36%) 13% (0-25% 43%) 0.38 63% (49-96% 34%) 7% (2-15% 0%) 0.95 7% 5-30% 24%) 0.38 10% (1-13% 0%) 0.25 9% (4–16% 66%) 8% (1-20% 53%) 20% (9-21% 0%) 10% (1-18%0%) 0.87 (5-22% 71%) 89% (78-98% 0%) 97% (88-100% 0%) 97% (90-100%71%) 97% (86-100% 71%) 96% (84-100% 79%) Rate of Carotid TICI 3 36% (26-48% 71%) 18% (2-60% 75%) NA 26% (6-52% 72%) 27% (17–39% 41%) Any ICH 0.39 20% (0-40% 60%) 23% (15-32% 82%) 24% (2-54% 82%) 19% (8-33% 84%) 0.98 75 (53-97% 95%)

Order of stenting

Original research

Acute carotid stenting in patients undergoing thrombectomy: a systematic review and meta-analysis

Gabrielle Dufort, ^{1,2} Bing Yu Chen, ³ Grégory Jacquin , ^{1,2,4} Mark Keezer, ^{1,2,4} Marilyn Labrie, ¹ Bastlen Rioux, ^{1,2} Christian Stapt, ^{1,2,4} Daniela Ziegler, ⁵ Alexandre Y Poppe , ^{1,2,4}

- order of stenting relative to thrombectomy among stented patients (≥50% of stented patients in study stented before thrombectomy vs >50% of patients stented after thrombectomy)
- the order of stenting relative to thrombectomy was not associated with functional outcome in the study.

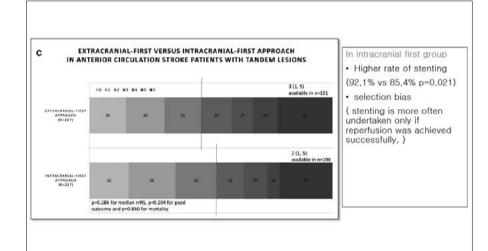
Dufort G, et al. J NeuroIntervent Surg 2021;13:141–145. doi:10.1136/neurintsurg-2020-015817

CLINICAL AND POPULATION SCIENCES

Tandem Lesions in Anterior Circulation Stroke

Analysis of the German Stroke Registry-Endovascular Treatment

Katharina Fell, MD*; Moriz Herzberg®, MD*; Franziska Dorn, MD; Steffen Tiedt®, MD; PhD; Clemens Küpper®, MD; Dennis C. Thunstedt®, MD; Panagiotis Papanagiotiou, MD; Lukas Meyer®, MD; Andreas Kastrup, MD; Konstantinos Dimitriadis, MD; Thomas Liebig, MD; Marianne Dieterich, MD; Lars Kellert®, MD; for the GSR Investigators*


BACKERBUIND AND PURPOSE: Tandem lesions in the anterior circulation account for up to 30% of all large vessel occlusion strokes. The optimal periprocedural approach in these lesions is still a matter of debate.

MERIODIS: Data from the German Stroke Registry—Endowascular Treatment between June 2015 and December 2019 were analyzed. The German Stroke Registry—Endowascular Treatment is an academic, independent, prospective, multicenter, and produce the German Stroke Registry—Endowascular Treatment is an academic, independent, prospective, multicenter, thrombectomy patients. Tandem features were defined as a combination of a referent entracrenal internal carotid artery (CA) pathology (gisilateral standers) 2700 for occularion, and concomitant internal carotid artery (CA) pathology (gisilateral standers) 2700 for occularion, and concomitant internal carotid artery (CA) pathology (gisilateral standers) 2700 for occularion, succeeding the concomitant internal large vessel occularion. Succeeding and concomitant internal large vessel occularion. Succeeding and concomitant internal large vessel occularion. Succeeding and concomitant internal state occularion. Succeeding and concomitant internal state occularion. Succeeding and concomitant internal states are concomitant internal conclusions. 2700 for occularion, succeeding the concomitant internal states are concomitant internal care and conclusion and concomitant internal care and control occuration. Succeeding the concentration of a referent enternal state occuration and control occuration. The concentration occurrence occurrence are concentration of a referent enternal state occuration. The concentration occurrence occurrence

RESUITS: Out of 6635 patients, 874 (13.2%) presented with tandem lesions. Of these, 607 (69.5%) underwent acute treatment of the extracranial ICA Acute treatment of the extracranial ICA lesion led to a higher probability of successful reperfusion (odds ratio, 40.63 (90% Ct, 30.03–70.06)) compared with patients who did not undergo acute treatment of the extracranial ICA lesion and was associated with good clinical outcome (30.5% versus 20.3%, Pc.0.001) and a lower rate of mortality (17.1% versus 27.1%, Pc.0.001) at 3 months, Further significant predictors of successful reperfusion were age codes ratio, 10.58 (95% Ct, 10.04–50.4);
Pc.0.033, Intracranial-first approach (pc.227) compared with extracranial-first approach (pc.267) resulted in a shorter time to flow restoration (65.5 versus 72.0 minutes, Pc.0.001) and a higher nonsignificant probability of good outcome (45.8% versus 33.0%, Pc.0.24) without differences in perforcedural complications.

CONCLUSIONS: In tandem lesions in the anterior circulation, acute treatment of the extracranial ICA lesion is associated with better clinical outcome and lower mortality. The intracranial-first approach might provide advantages.

	Acute treatment of ICA in tandem lesions (anterior circulation), me607				Acute treatment of ICA in tandem lesions (anterior discutation m=607)			
	Extracrantal-first approach (n=267)	intracranial-first approach (n=227)	Pyotan		Extracrantal-first approach (nw267)	intracranial-first approach (n=227)	Pvalue	
Age, y (SD)	69.3±11.9	67.5±11.2	0.091	Acute estracranial ICA treatment				
Sox, female, n (%)	83 (31.1%)	64 (28.2%)	0.484	Steeling	220 (05.4%)	209 (92.1%)	0.021	
Clinical characteristics at admission	CONTRACTOR OF THE PARTY OF THE	TO THE PARTY OF TH		PTA	241 (90.3%)	107 (86.0%)	0.225	
pmRS, median (IOR)	0 (0-0)	0 (0-0)	0.059	Other	1 (0.4%)	0 (0%)	0.358	
Baselne NIHSS, median (IQR)	14 (9-10)	14 (10-18)	0.912	Periprocedural complications, n (%)	64 (24.0)	46 (20.3)	0.338	
Time intervals			Device malfunction	1 (0.4)	1 (0.4)	0.909		
Symptom onsetfast seen well to IVT	183.0 (153.0-544.5)	195.0 (130.0-264.5)	0.059	Dissection, perforation	11 (4.1)	10 (4.4)	0.976	
Admission to grain	71.0 (43.5-108.0)	60.0 (45.0-85.0)	0.042	Clot migration, embolization	15 (5.6)	7 (3.1)	0.174	
Groin to first passage	40.0 (20.0-58.3)	26.0 (15.0-38.0)	<0.001	ICH	18 (6.7)	11 (4.8)	0.373	
Grain to flow restoration	72.0 (50.0-101.5)	53.5 (36.0-78.0)	<0.001	Vasospasm	25 (9.4)	13 (5.7)	0.131	
IVT treatment, n (%)	145 (54.0)	141 (62.1)	0.080	Resuscitation	3 (1.1)	2 (0.9	0.799	
Imaging data				Other	19 (17.1)	19 (8.4)	0.603	
ASPECTS, median (ICR)	8 (7-10)	8 (7-10)	0.336	Successful reperfusion mTICl2b/3, n. (%)	230 (85,1)	200 (92.1)	0.086	
			0.303	Hospital stay				
ICA eros + MCA	172 (64.4%)	167 (69.2%)		Malignant MCA interction, n (%)	14 (5.2)	15 (6.6)	0.521	
ICA estra + Carotis-T	94 (35.2%)	68 (30.0%)		Recurrent stroke, n (%)	9 (3.4)	16 (7.0)	0.063	
ICA estra + ACA		2 (0.9%)		ICH, n (%)	68 (25.5)	49 (21.8)	0.313	
ICA estra + PCA (embryonic)	1 (0.4%)	1		Mycoardial intention, n (%)	8 (1.1)	2 (0.6)	0.789	
Type of ancethraia	- 9		0.277	Groin hematoma	4 (1.5)	4 (1.8)	0.817	
Conscious sodiation, n (%)	58 (21.0)	64 (28.2)		Groin answysm	2 (0.7)	0 (0)	0.192	
General anesthosis, n (%)	202 (78.7)	151 (96.5)		Other complications during hospital stay	49 (18.4%)	68 (30,0%)	0.002	
Conversion, n (%)	4 (1.5)	9 (4.0)		Duration of hospital stay (days±SD)	10.919.5	11,4210.4	0.603	
Additive medication, n (%)	162 (60.7%)	115 (50,7%)	0.025				1	
Treatment approaches for intracranial LVO								
Aspiration catheter only, n (%)	14 (5.2)	17 (7.5)	0.358					
Steet retriever only, n (%)	107 (40.1)	74 (32.6)	0.041					
Aspiration and stort retriever, n (%)	133 (49.8)	132 (58.1)	0.150					
Unknown, n ('m)	13 (4.9)	3 (1.3)	0.383					
Number of passages	2.981.9	2.4±2.8	0.815					

Summary

C-ICA stenting or thrombectomy alone

- · Absence of findings from RCT....
- Observational evidences > supporting a possible benefit of acute-ICA stenting.
 More successful recanalization, better outcome, higher rate of any ICH(not sICH)
- · Lack of benefit: dissection / severe stroke / large infarction core

Intracranial first (Retrograde) or Extracranial first (Anterograde)

- · similar functional outcomes
 - : tendency towards better outcomes in retrograde approach group
 - : theoretical advantages to retrograde approach (shorter recanalization time)
 - > Decision is left discretion of interventionist

대한뇌혈관내치료의학회/ 대한뇌혈관외과학회 합동연수교육

(2021 대한뇌혈관내치료의학회 추계보수교육 및 ARCS)

인 쇄 2021년 09월 30일

발 행 2021년 10월 01일

발 행 처 대한뇌혈관내치료의학회

회 장 윤석만

총무이사 박석규

학술이사 권순찬

소 서울시 서초구 서초대로 350 (서초동 동아빌라트 2타운) 407호

제 작 마이스티엘

소 서울 마포구 양화로 183, 2층(효성 홍익인간 오피스텔)

TEL) 02-6952-5824

Q-Guard

Topical Hemostatic Dressing / Bleeding Control / Kaolin

큐가드는 체내에 알레르기나 면역 반응을 유발하지 않고 지혈을 촉진시키는 카올린(Kaolin)이 거즈에 특수 코팅되어 광범위한 영역의 출혈을 억제하기 위해 사용하는 지혈용 드레싱입니다

품목명 국소지혈용드레싱

제품명 Q-Guard / 큐가드

원재료 카올린(Kaolin), 거즈(레이온)

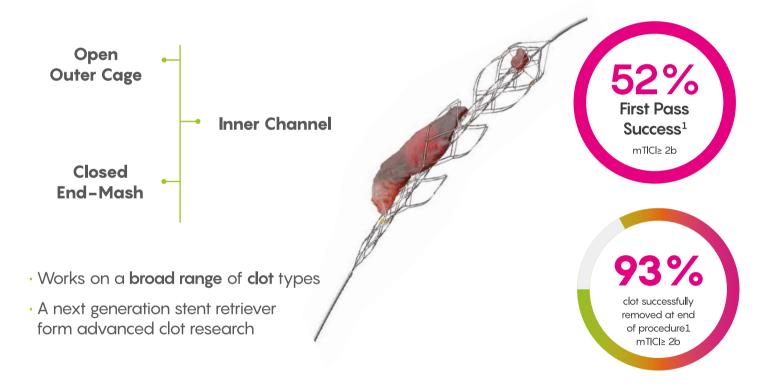
가 격 법정비급여 포장단위 10EA / Box

2x2Hemostatic Dressing

4 x 4 Hemostatic Dressing

Z-Fold Hemostatic Dressing

3 x 10 Hemostatic Dressing


EMBOTRAP®II

revascularization device

EMBOTRAP® II Revascularization Device is designed to engage and grip clots differently, to remove various thrombus types and is engineered to maximize the **First Pass Effect** (FPE)

CERENOVUS KOREA팀은 EmboTrap2 를 포함하여, 앞으로도 Acute Ischemic Stroke 치료에 도움이 되는 여러 제품으로 선생님 여러분들께 찾아 뵙겠습니다.

Designed to engage and grip differently - Dual Layer Design Design

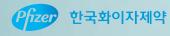
EMBOTRAP®II revascularization device	NAME	CATALOG #	RECOMMENDED VESSEL DIAMETER	MICRO CATHETER COMPATIBILITY	DIAMETER	WORKING LENGTH	DEVICE LENGTH	TIP LENGTH
about the contract of the cont	5×21	ET007521	1.5-5.0 mm	0.021" ID	5.0 mm	21 mm	194 cm	4 mm
A CONTRACT OF THE PARTY OF THE	5×33	ET007533		0.021		33 mm	195 cm	

^{*} The FPE is a direct correlation of the ability thrombectomy device to restore complete recanalization (TICI 2c-3) in a single pass through dot.

진정으로 안녕하신가요?

Precedex[®] is a promising sedative optimized for ICU care.¹

ICU, Intensive Care Unit


References 1, Yu SB, Dexmedetomidine sedation in ICU, Korean J Anesthesiol, 2012 May;62(5):405-411.

프리세덱스주/프리세덱스프리믹스주

프리세덱스주/프리세덱스 프리믹스주 주요 안전성 정보 프리세덱스는 의사에 의해 투여되어야 하며, 환자가 이 약을 투여 받는 동안 지속적으로 감시하여야 합니다. 자극을 받았을 때 프리세덱스를 투여 받은 일부 환자에서 각성되거나 기민함이 나타날 수 있습니다. 프리세덱스를 24시간 이상 투여하고 갑자기 중지하면, 알파-2-아드레날린 작용제인 클로니단에서 보고된 바와 같은 유시한 금단증상이 나타날 수 있습니다. 이 약을 투여 받은 318명 대상 의식하 진정에 대한 2개의 임상시험에서, 호흡저하 (호흡이 8번 미만 또는 기저치로부터 25% 초과 감소)는 의식하 진정에서 2% 이상 발생한 이상반용 중 하나였으며, 호흡률 감소 및 저산소증은 이 약과 대조군 사이에 유시하였습니다. 가장 빈번한 이상반용은 저혈압, 서맥 및 구강건조로 나타났습니다.

대조소 사이에 유사이었습니다. 가정 안인한 이상인은는 사항값, 서희 및 구강간조도 나타었습니다.
프리세덱스주 (텍스메데토미단염산열) 200mcg/20mL / 프리세덱스 프리막스주 (텍스메데토미단염산염) 80mcg/20mL, 200mcg/50mL, 400mcg/100mL 제품요약정보
[遠宗·호과] 1. 집중치료 관리하의 진장: 집중치료 관리하에 초기 삽관되어 인공호흡을 실시하는 환자의 진정 2. 수술 및 시술 시 비삽관 환자의 의식하 진정 : 1)갑시하 마취 관리 (Monitored Anesthesia Care, MAC) 2) 의식하 광섬유 삼관(Awake Fiberoptic Intubation. 4F) [용법 용명] 1. 집중치료 관리하여 진정 • 개시 : 10-20분간 Inncg/kg • 유지 : 0.0~0.7mcg/kg/hr. 정맥주입 속도는 원하는 진정 수준은 달서하기 위하여 조절 2. 수술 및 시술 시 비섭관 환자의 의식하 진정 • 개시 : 10분간 Inncg/kg · 유지 · 0.0~0.7mcg/kg/hr. N원하는 일성호과를 얻기위해 0.2~1mcg/kg/kg/hr.으로 적정 가능 의식하 광점유 십관한 환자는 기관 내 튜브가 안전하게 될 때까지 0.7mcg/kg/hr [경고] 이 약은 의사에 의해 투여되어야 하며 환자가 이 약을 투여 받는 동안 지속적으로 감시하여야 한다. 간장에 환자에서는 이 약의 청소율이 감소되기 때문에 간기능이 손상된 환자에게는 용광을 감광하여야 한다. [금기] 이 약의 성분에 대하여 과민증 또는 과거 과민증의 경험이 있는 환자 [신중투여권] 심혈관 질환 환자. 삼장가능이 저하된 환자. 순원혈류광이 저하된 환자. 간장에 환자. 신장에 환자 (이상반응) 다양한 조건하에서 임상사험에 실사되었기 때문에 이 약의 엄청사업에서 관환된 이상반응 비율은 다른 약을의 임상사험에서의 비율과 직접적으로 비교할 수 없으며, 실제적으로 관합되는 비율과 다를 수도 있다. [프리세텍스주 개정년월일] 2019.9.3 ※자세한 내용은 제품설명사를 참조하시기 바랍니다.

optima[™] coil system optimal design, optimal detachment

Optima Coil System is manufactured by Balt USA, 29 Parker, Irvine, CA 92618. The Optima Coil System is intended for the endovascular embolization of intracranial aneurysms and other neurovascular abnormalities such as arteriovenous malformations and arteriovenous fistulae. The Optima Coil System is also intended for vascular occlusion of blood vessels within the neurovascular system to permanently obstruct blood flow to an aneurysm or other vascular malformation and for arterial and venous embolizations in the peripheral vasculature. The content of this document, in particular data, information, trademarks and logos are BALT S.A.S and affiliates' sole property. Consequently, all representation and/or reproduction, whether in part or in full, is forbidden and would be considered a violation of BALT S.A.S and affiliates' copyrights and other intellectual proprietary rights ©2018 BALT S.A.S and affiliates all rights reserved. This document with associated pictures are non-contractual and are solely dedicated to healthcare professionals and BALT S.A.S and affiliates' distributors. The products commercialized by BALT S.A.S and affiliates shall exclusively be used in accordance with the package inserts which have been updated and included in the boxes. Optima Coil System is Class III CE marked (DQS CE0297) according to the Medical Device Directive 93/42/EEC Annex II Section 4 since July 2017 (535003 W). (05/2018).

High Purity Rosuvastatin Rovetin Tab.

이상지질혈증을 처음 진단받은 환자에게, 일동제약이 직접 생산하는 <mark>로베틴</mark>으로 지질관리를 시작하세요.

Rosuvastatin 5mg, 10mg, 20mg

10 MILLION + REPAIRS[†] DON'T JUST CLOSE, REPAIR.

