2021 대한뇌혈관내 치료의학회 춘계보수교육

일시 l 2021년 2월 27일(토) 장소 l 판교 차바이오컴플렉스 지하1층 국제회의실

모시는 글

존경하는 대한뇌혈관내치료의학회 회원 여러분!

안녕하십니까?신축년 흰 소띠의 해를 맞아 회원 여러분과 가정에 건강과 행복 이 가득하기를 기원합니다. 작년한 해는 코로나-19 대유행으로 평범했던 일상조차 얼마나 소중한지를 느끼는 한 해였습니다. 이렇게 특별한 상황에서도 환자 진료와 교육, 연구에 매진하고 계신 회원 여러분께 존경과 경의를 표합니다. 새해를 맞아 정부 의방역수칙 강화에도 불구하고 아직 어려운 상황이 지속되고 있으나 수련 교육을 게을리할 수는 없기에 매년 해오던 춘계 보수교육을 온라인을 병행하여 시행하고자 합니다.

이번 춘계 보수 교육의 주제는 Dural AVF입니다. 경막동정맥루는 발생 빈도가 드문 질환으로 환자 치료 경험이 제한적일 수밖 에 없기에 병변을 이해하고 치료 술기를 습득하는데 적지 않은 어려움이 있을 것입니다. 이러한 어려움을 극복하는데 도움이 되고자 이번 보수교육에서는 경막동정맥루의 발생 기전과 치료 시 고려해야 할 측 부순환, 그리고 병변 위치에 따른 치료의 특성 등 동정맥루와 관련된 전반적인 사항을 다루는 프로그램을 준비 하였습니다. 그리고, 이 분야의 저명한 두분 교수님을 초청 연자 로 모셔서 특강을 듣는 "Meet the Experts" 세션을 마련하였습니다. 우리나라 뇌혈관내치료 분야의 선구자이신 한문희 교수 님의 명강의를 들을 수 있을 것이며, 동정맥루에 대한 해박한 지식과 풍부한 경험을 갖춘 일본 Toyama 대학의 Kuwayama 교수님의 온라인 강의가 흥미로울 것입니다. 이를 통해 동정맥 루를 보다 더 잘 이해하게 될 것이며, 치료의 지평을 넓힐 수 있는 기회가 될 것입니다.

또한 뇌졸중 시술 인증제를 어떻게 국가에서 필요로 하는 시스템 으로 발전시킬 수 있을지 생각해 볼 것이며, 향후 추진할 가능성 이 높은 지역심뇌혈관센터 지정 및 육성 사업과 관련하여 의료 현장의 현실을 반영한 우리 학회안을 구상해 보는 시간을 마련 하였습니다. 회원 여러분의 관심과 많은 참여 부탁드립니다.

마지막으로 이번 춘계 보수 교육을 준비하느라 수고해 주신 임원 여러분과 어려운 상황에서도 항상 우리 학회에 관심과 성원을 보내 주시는 기업 관계자 여러분께 감사드립니다.

모쪼록 건강에 유의하시고 건강한 모습으로 2월 27일에 뵙기를 고대합니다. 감사합니다.

대한뇌혈관내치료의학회 회장 윤석만 드림

2020~2021 대한뇌혈관내치료의학회 임원진

명예회장

0-11-10		
직위	성명	소속
	백민우	인봉의료재단 뉴고려병원
명예회장	권도훈	울산대학교 서울아산병원
회장		
직위	성명	소속
회장	윤석만	
부회장	 판국건 장철훈	
구획형	Ö글군	8급대왁뽀8면
상임이사		
직위	성명	소속
 총무	박석규	
		순천향대학교 서울병원
학술	권순찬	울산대학교병원
정책	신승훈	차의과대학교 분당차병원
재무	김영우	가톨릭대학교 의정부성모병원
수련교육	유승훈	울산대학교 강릉아산병원
7224	김태곤	차의과대학교 분당차병원
간행	하성곤	고려대학교 안산병원
	권현조	충남대학교병원
보험	정준호	연세대학교 세브란스병원
	박석규	순천향대학교 서울병원
대외협력	김성림	가톨릭대학교 부천성모병원
국제교류	정진영	연세에스병원
	고준경	
법제윤리		부산대학교병원
홍보	신희섭	강동경희대학교병원
전산정보	장경술	가톨릭대학교 인천성모병원
	신동성	순천향대학교 부천병원
회원관리	장인복	한림대학교 평촌성심병원
진료지침	남택균	중앙대학교병원
전표시 급	최재형	동아대학교병원
연보·학회사편찬	임용철	아주대학교병원
진료심의	박중철	울산대학교 서울아산병원
TIFILIAN	김문철	에스포항병원
전문병원	허준	명지성모병원
학술지편집	김대원	원광대학교병원
인증관리	이호국	한림대학교 강남성심병원
다기관임상	김범태	순천향대학교 부천병원
미래전략	권오기	분당서울대학교병원
국제학술대회	신용삼	가톨릭대학교 서울성모병원
의학회	장철훈	영남대학교병원
여의사위원회	심숙영	인제대학교 서울백병원
심뇌혈관질환정책	윤창환	분당서울대학교병원 순환기내과
뇌신경마취	전영태	분당서울대학교병원 마취통증의학과
의료기기연구	양수근	인하대학교 의과대학 의생명학과
뇌신경재활	김수아	순천향대학교 천안병원 재활의학과
다학제연구	이학승	원광대학교병원 신경과
다학제연구	정용안	가톨릭대학교 인천성모병원 핵의학과
다학제연구	이아름	순천향대학교 부천병원 영상의학과
광주/전라지회	김태선	
대구/경북지회	장철훈 기청도	영남대학교병원
대전/충청지회	권현조	충남대학교병원
부산/울산/경남지회	정진영	연세에스병원
인천지회	현동근	인하대학교병원
감사	고정호	단국대학교병원
'a'\	이종영	한림대학교 강동성심병원
간사	오재상	순천향대학교 천안병원

전임회장단

직위	성명	소속
초대, 제2대	백민우	인봉의료재단 뉴고려병원
제3대	김영준	단국대학교병원
제4, 5대	권도훈	울산대학교 서울아산병원
제6대	안성기 (작고)	(전) 한림대학교 성심병원
제7대	신용삼	가톨릭대학교 서울성모병원
제8대	권오기	분당서울대학교병원
제9대	김범태	순천향대학교 부천병원
제10대	성재훈	가톨릭대학교 성빈센트병원
제11대	고준석	강동경희대학교병원

운영위원

직위	성명	소속
	김성태	인제대학교 부산백병원
	김명진	가천대학교 길병원
	김종훈	영남대학교병원
+1 + 0101+1	박정현	한림대학교 동탄성심병원
학술위원회	반승필	분당서울대학교병원
	조수희	울산대학교 강릉아산병원
	 최규선	한양대학교병원
	박상규	연세대학교 강남세브란스병원
	강현승	서울대학교병원
	이 년 이 장철훈	영남대학교병원
	ㅇ ㄹᆫ 이종영	한림대학교 강동성심병원
_	 이 등 6 박근영	연세대학교병원
_	무근 경 바스피	
	반승필	분당서울대학교병원
_	오세양	인하대학교병원
	진성철	인제대학교 해운대백병원
정책위원회	권현조	충남대학교병원
0 1112-1	강동훈	경북대학교병원
	정영진	영남대학교병원
	홍대영	에스포항병원
	문종현	광주기독병원
	박정수	전북대학교병원
	임종국	제주대학교병원
	이승진	강원대학교병원
	이동훈	가톨릭대학교 성빈센트병원
재무위원회	이동훈	가톨릭대학교 성빈센트병원
11112-1	전진평	한림대학교 춘천성심병원
	 김창현	양산부산대학교병원
_	180년 반승필	당선수선대역표정권 분당서울대학교병원
_		
거사저나이이치	조병래 무조형	가톨릭대학교 은평성모병원
전산정보위원회	문종현	광주기독병원
	전효섭	강원대학교병원
	신재전	가톨릭대학교 의정부성모병원
	조성윤	뉴고려병원
	이호준	가톨릭대학교 성빈센트병원
	신동성	순천향대학교 부천병원
	신희섭	경희대학교 강동병원
인증관리위원회	전홍준	한림대학교 강동성심병원
202 11124	김소연	가톨릭관동대학교 국제성모병원
	오인호	중앙보훈병원
	안준형	한림대학교 평촌성심병원
	김영우	가톨릭대학교 의정부성모병원
	김태곤	차의과대학교 분당차병원
교과서편찬위원회	황교준	한림대학교 한강성심병원
	정준호	연세대학교 세브란스병원
	오재상	순천향대학교 천안병원
	 남택균	중앙대학교병원
	 박정수	전북대학교병원
국제교류위원회	 신희섭	경희대학교 강동병원
7 11 11 11 11 11 11 11 11 11 11 11 11 11	 이동훈	가톨릭대학교 성빈센트병원
-	 정영진	어달리네વ파 중단만= 중단 영남대학교병원
	0 0 12	O마네티프OU

초청연자

Naoya Kuwayama, M.D., Ph.D.

Title

Professor, Division of Neuroendovascular Therapy
Associate Professor, Department of Neurosurgery, University of Toyama, Japan

Education

1976 - 1981	Medical Faculty, University of Tsukuba, Japan

1982 Medical Doctor

1988 Certified neurosurgeon (specialist of neurosurgery)

2001 Certified endovascular neurosurgeon (senior instructor)

Academic Appointments

1985 - 1994	Assistant professor, Dept. of Neurosurgery, University of Toyama
1994 - 2006	Lecturer, Dept. of Neurosurgery, University of Tayama
2006 - Present	Associate professor, Dept. of Neurosurgery, University of Toyama
2007 - Present	Professor, Div. of Neuroendovascular Therapy, University of Toyama

Academic Society

2001 - Present	Board member of The Japanese Society of Neuroendovascular Therapy
2008 - 2009	President of Japanese Society of Neuroendovascular Therapy (JSNET)

[PROGRAM]

08:30-09:15	Registration		
09:15-09:30	Course Introduction	김태곤 (대한뇌혈관내치료의학회 수련교육이사)	
	Opening Remark	윤석만 (대한뇌혈관내치료의학회 회장)	
	Welcome Address	이일우 (대한신경외과학회 회장)	
09:30-11:00	Session I. Anatomy and pathophysiology	of dural AVF 좌장: 성재훈 (가톨릭대), 장인복 (한림대)	
09:30-10:00	Pathophysiology of dural AVF, classification	심숙영 (인제대)	11
10:00-10:30	Pathological vascular anatomy for dural AVI	조수희 (울산대)	19
10:30-11:00	Clinical features and natural history, treatm	ent indication 송지혜 (아주대)	30
11:00-11:20	Coffee break		
11:20 - 12:10	Special symposium	좌장: 윤석만 (순천향대), 고준석 (경희대)	
11:20 - 11:40	KoNES 뇌졸중 시술 인증제의 발전 방향	신희섭 (경희대)	43
11:40 - 12:10	KoNES 뇌혈관센터 구성안	신승훈 (차의과학대)	50
12:10 - 13:10	Photo time & Lunch		
13:10-14:40	Session II. Endovascular treatment of dur	ral AVF 좌장: 신용삼 (가톨릭대), 하성곤 (고려대)	
13:10-13:40	Dural AVF of the cavernous sinus	권순찬 (울산대)	53
13:40-14:10	Dural AVF of transverse-sigmoid sinus, tento	orial, clival, etc 이창영 (계명대)	54
14:10-14:40	Spinal AVF	강현승 (서울대)	55
14:40-15:00	Coffee break		
15:00-16:30	Session III. "Meet-the-Expert" session	좌장: 백민우 (뉴고려병원), 김범태 (순천향대)	
15:00-15:45	Endovascular treatment of dural AVF	한문희 (중앙보훈병원)	63
15:45-16:30	Endovascular treatment of dural AVF Nac	oya Kuwayama (University of Toyama, Japan)	70
16:30-17:30	Session V. Interesting or complicated case	es presentation of dural AVF 좌장: 권오기 (서울대), 허준 (명지성모병원)	
16:30-16:45	Case Presentation 1	박근영 (연세대)	81
16:45-17:00	Case Presentation 2	임종국 (제주대)	86
17:00-17:15	Case Presentation 3	고정호 (단국대)	87
17:15-17:30	Case Presentation 4	신희섭 (경희대)	96
17:30	Closing Remark	김태곤 (대한뇌혈관내치료의학회 수련교육이사)	

2021 대한뇌혈관내 치료의학회 춘계보수교육

Session I. Anatomy and pathophysiology of dural AVF

좌장: 성재훈 (가톨릭대), 장인복 (한림대)

Pathophysiology of dural AVF, classification

Pathological vascular anatomy for dural AVF

Clinical features and natural history, treatment indication

심숙영 (인제대)

조수희 (울산대)

송지혜 (아주대)

Pathophysiology and Classification of Dural AVF

심숙영

인제대 일산백병원 신경과

Intracranial Dural AVF

Incidence

Dural arteriovenous fistulas (DAVFs) are pathologic shunts between pachymeningeal arteries and dural venous channel. DAVFs are distinguished from parenchymal or pial arteriovenous malformations by the presence of a dural arterial supply and the absence of a parenchymal nidus [1]. The incidence of cranial DAVFs has been estimated 0.15~0.29/100,000 per year [2] and the intracranial location is reported as transverse sinus (50%), cavernous sinus (16%), tentorium cerebelli (12%), and superior sagittal sinus (8%) [3]. DAVFs are relatively rare, accounting for 5–15% of all cranial vascular malformation. However, DAVFs can lead to significant morbidity and mortality due to intracranial hemorrhage and non-hemorrhagic neurologic deterioration related to leptomeningeal venous drainage [3, 4].

Etiology

The etiology of DAVFs is not fully understood, but the majority of DAVFs in adulthood appear to be acquired. Different etiologies have been implicated such as trauma, previous craniotomy, and a hypercoagulable state including malignancy, pregnancy, infection, and prothrombotic genes [5-7]. DAVFs in the pediatric population are thought to be associated with congenital venous anomalies of the developing venous system or a result of birth trauma, infection, in utero venous thrombosis, or maternal hormones [8].

Angioarchitecture associated with DAVFs

A meningeal branch of each artery supplying the brain or spinal cord consistently pierce the dura through a venous sinus or else are surrounded by a venous plexus. When meningeal arteries running outside the dural layers penetrate the dura, they come much closer to meningeal veins or venous sinuses running between outer periosteal and inner meningeal layer of dura.

In normal dural sinus [9], dural vessels were more numerous at angles formed by a fusion of two dural leaves, which were rich in veins of varying sizes communicating with one another. Dural arteries were not observed inside of the sinuses, but branches of veins occasionally penetrated through the sinus wall and communicated with their lumens. Even though there is no arteriovenous anastomosis among the dural vessel, the dural arteries and veins were located close to one another. This intimate relationship between the meningeal branches and the venous sinuses offers anatomical opportunity for the development of fistulas [10, 11].

In histologic specimen of experimental DAVF models [9], the affected sinuses were remarkably

narrowed by thickening of the intima and organized thrombi. Dural veins were markedly dilated and had communication with one another and with the lumens of the venous sinuses. No direct communication was observed between dural arteries and venous sinuses. However, fistulas were seen between arteries with a diameter of about 200um and dilated dural veins near the venous sinuses.

Pathophysiology of Development of DAVFs

While the exact mechanisms are still controversial, venous sinus thrombosis and venous hypertension have been believed to be associated with the genesis of DAVFs [5, 12-14]. Two etiologic hypotheses regarding to sinus thrombosis and venous hypertension have been suggested. The first is that physiologic arteriovenous shunts that are normally present between meningeal arteries and dural venous sinuses expand to form a pathologic shunt in response to elevated local venous pressure as a result of sinus thrombosis [15, 16]. The second is that venous hypertension due to outflow obstruction causes decreased cerebral perfusion and promotes neoangiogenesis [14, 15, 17]. Angiogenic growth factors. produced as a result of sinus thrombosis, might contribute to the development of DAVFs [14]. Kultulk et al. [18] proposed a three stage hypothesis for the pathogenesis of DAVFs as initial stage of venous sinus thrombosis, second stage of angiogenic factor induced microscopic fistula development within the wall of the thrombosed sinus, and final stage of recanalization of the thrombosed sinus. Whether the cause or the result of hemodynamic disturbance, venous hypertension and thrombophilic condition such as venous thrombosis clearly plays a role in the development of DAVFs [7, 19]. Once triggered by venous hypertension and venous thrombosis, arterial feeder recruitment and development of DAVFs via neoangiogenesis might proceed. This process is associated with upregulation of hypoxia-inducible factor-1, vascular endothelial growth factor, stroma-cell derived factor alpha, and MMP-9 [19-21].

Classification

The relationship between the pattern of venous drainage and the natural history of DVAFs leads to proposal of classifications based on the venous drainage pattern of the shunts [10, 22]. Borden et al. proposed a classification system incorporating spinal DAVFs on the basis of the site of venous drainage and the presence of cortical venous drainage (CVD) [10]. Spinal epidural venous plexus corresponds to an intradural sinus and the spinal perimedullary veins are subarachnoid veins. Borden type I DAVFs exhibit normal antegrade flow into the dural venous sinus or meningeal vein. Type II DAVFs are those that drain into the dural sinus with retrograde flow into the subarachnoid veins. Type III DAVFs have retrograde drainage directly into the subarachnoid veins or an isolated sinus that is completely thrombosed on both sides of the arterialized segment.

Cognard et al. have classified DAVFs into five types based on the direction of dural sinus drainage, the presence of CVD, and venous outflow architecture. Cognard Type I DAVFs have an antegrade drainage into the dural sinus without CVD. Type II DAVFs are subdivided into type IIa (retrograde drainage into a dural sinus without CVD), IIb (antegrade drainage into a dural sinus with CVD), and IIa+b (retrograde drainage into a dural sinus with CVD). Type III, IV, and V DAVFs have retrograde drainage directly into subarachnoid vein, ectatic subarachnoid vein, and spinal perimedullary vein, respectively (Table 1).

Table 1. Classification of Dural Arteriovenous Fistulas

Borden		Cognard	
I	Drainage into sinus or meningeal vein	I	Drainage into a sinus, with antegrade flow
II	Drainage into sinus/meningeal vein with retrograde flow into subarachnoid vein		Drainage into a sinus, with insufficient antegrade sinus drainage and reflux

		lla	Drainage into a sinus, sinus reflux only
		IIb	Drainage into a sinus, cortical vein reflux only
		lla+llb	Drainage into a sinus, sinus and cortical vein reflux
III	Drainage into subarachnoid vein only	III	Direct drainage into a cortical vein without venous ectasia
		IV	Direct drainage into a cortical vein with venous ectasia
		V	Drainage into spinal perimedullary veins

In either classification scheme, lack or presence of CVD can allow appropriate risk prediction for therapeutic decision-making. DAVFs without CVD (Borden type I, Cognard type I, IIa) have benign natural history with mild symptoms. Annual risk of hemorrhage has been reported low [23, 24]. The presence of CVD (Borden types II and III, Cognard types IIb-V) indicates an aggressive feature with an annual incidence of hemorrhage of 8% and non-hemorrhagic neurological deficit of 6~15% [25, 26]. Rebleeding rate in DAVFs with CVD reaches up to 35% [27]. Subdividing DAVFs with CVD according to presence of symptoms may have more predictive value in risk stratification [24]. Asymptomatic DAVFs patients with CVD have a considerably lower annual hemorrhage risk of 1.5%, while symptomatic patients with CVD have 7.4% of annual risk. However, DAVFs has been considered to have a dynamic nature. DAVFs without CVD can develop CVD in the future with ongoing venous stenosis, thrombosis, or increased arterial flow [28, 29]. Spontaneous thrombosis and resolution of DAVFs have also been reported [30].

Spinal Dural AVF

History and Classification of Spinal Arteriovenous Lesions

Since Foix and Alajouanine first described of spinal DAVFs (1926), the evolution of diagnostic tools has led to examine the angioarchitecture of these spinal vascular lesions better. However, there is still a lack of consensus in the classification and terminology of the spinal arteriovenous lesions [12]. Spinal vascular lesions have been described by numerous names such as spinal AV shunt (Di chiro, 1967), extramedullary and intramedullary vascular malformation (Yasargil, 1975), a spinal epidural angiomatous malformation draining into intrathecal veins (Kendall, 1977), and spinal arteriovenous malformation (AVM) and divided into various classifications according to clinical feature, anatomical location and angioarchitecture [31]. In general, spinal vascular lesions are divided into two categories; arteriovenous shunting lesions including spinal arteriovenous malformation (AVM) and arteriovenous fistulas (AVF), and non-shunting lesions including capillary telangiectasia and cavernous malformations. In this chapter, spinal arteriovenous shunting lesions will be further discussed.

In 1971, Di chiro et al. described the first classification of spinal AV shunts as type I (single coiled vessel), type II (glomus), and type III (juvenile). The majority of type I fistula fit current concept of spinal DAVFs and the others correspond to intramedullary AVMs. In 1986, a direct spinal AVF (perimedullary fistula in current terminology) was added as type IV (a direct AV shunt between the anterior spinal artery and vein that was located ventral to the spinal cord). Rosenblum (1987) established most widely accepted classification: type I (dural AVF), type II (intradural intramedullary glomus AVM), type III (intradural intramedullary juvenile AVM), and type IV (intradural direct AVF) [32]. Since 1993, type IV intradural direct AVFs were described as perimedullary AVFs and perimedullary AVFs were further classified according to the number of feeding arteries and size of AVF; type I with a single feeder and single small AVF, type II with multiple feeders and multiple medium AVFs, and type III with multiple feeder and a single giant AVF

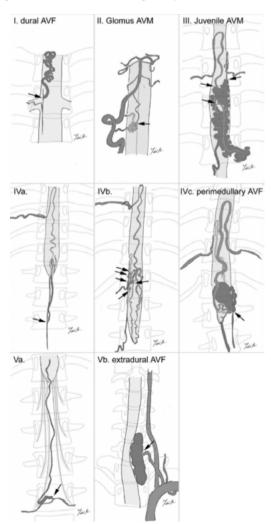
[33]. Now, extradural AVFs were added in this system and subdivided into three types according to the presence of intradural venous drainage and neurological deficits [34]. Recently, Takai [35] proposed a revised version of previous classifications (Table 2. Fig. 1). In 2008, Geibprasert and Lasjaunias reported a classification including intracranial and spinal AVFs in which AV shunts were divided into 3 groups based on the embryologic development of the venous drainage; the ventral, lateral, and dorsal epidural groups [36]. Spinal DAVFs are the lateral epidural AVFs.

Table 2. Revised classification of spinal AV shunt by Takai (2017)

Type	Academic name	Subtype	Feeder, AVF, and venous drainage
I	Dural AVF		
Ш	Intramedullary glomus AVM		
III	Intramedullary juvenile AVM		
IV	Perimedullary AVF	IVa	A single feeder and small AVF
		IVb	Multiple feeders and medium AVF
		IVc	Multiple feeders and a giant AVF
V	Extradural AVF	Va	With intradural venous drainage
		Vb	Without intradural venous drainage

Incidence and Clinical Characteristics

Spinal DAVFs are defined by pathologic shunt between a radicular artery and coronal venous plexus of the spine without an intervening capillary bed. They are the most common type of spinal cord vascular malformation, accounting for 50% to 85% of all spinal vascular lesions [37]. Spinal DAVFs are reported to affect 0.5~1/100,000 per year [38, 39] and precise incidence of the rest of spinal vascular lesions is lacking. Spinal DAVFs are thought to be acquired lesions and preferentially affect middle-aged men. At least 80% of patients in most series are male [39]. The most frequent location is in the lower thoracic and upper lumbar area [40] and patients most commonly present with gait abnormality or lower-extremity weakness and sensory disturbances. Spinal AVM including intramedullary AVMs and perimedullary fistulas are believed to be congenital and become symptomatic in childhood or early adulthood by steal or hematoma, whereas spinal DAVF typically present in the fifth and sixth decades [32]. Perimedullary fistula is a single shunt without a nidus between the spinal artery and the spinal vein and constitutes 20% of all spinal vascular lesions. In contrast with DAVF, these lesions are located ventrally or dorsally on the spinal cord and are located intradurally but extramedullarily. Spinal subarachnoid hemorrhage is one of the occurring signs because of its intradural location, while spinal DAVF seldom presents subarachnoid hemorrhage. Intramedullary AVM presents compression effects from dilated vessels, steal phenomena, and catastrophic intramedullary hematoma in young aged patients.


Pathophysiology

The pathophysiology of development of lesions and neurological deterioration is different in patients with DAVF and those with intradural spinal AVMs. Spinal DAVFs are probably acquired lesions while medullary AVM's are congenital in nature.

Although complex pathophysiologic mechanisms underlying the development of spinal DAVFs are yet to be clarified, meningeal venous thrombosis and trauma are implicated in the development of spinal DAVFs [38]. Conditions associated with vascular fragility such as fibromuscular dysplasia [41] and neurofibromatosis type 1 [42] are associated with spinal DAVFs. Histopathological examination supported the theory of venous hypertension as a pathophysiological mechanism in the development of DAVFs and increased venous congestion as a cause of neurological deterioration [43, 44].

Segmental arteries from each level of the spinal column gives rise to spinal radicular arteries supplying the dura (radiculomeningeal arteries) and accompanies the corresponding nerve root in its dural sleeve. These arteries may continue as a radiculomedullary artery, which accompanies the dorsal and ventral rami of the nerve root into the thecal sac to supply the anterior and posterior spinal arteries. An extramedullary, circumferential network of vein known as the coronal venous plexus receives spinal cord venous outflow and drains into the epidural vein via the radicular/radiculomedullary veins [12, 37]. In spinal DAVFs, the radiculomeningeal artery within the dural sleeve of the nerve root fistulizes with the radicular vein and this leads to arterialize the valveless perimedullary venous plexus. An increased venous pressure, venous congestion, edema, and progressive ascending myelopathy are caused by obstruction of venous outflow [39]. An increased venous pressure results in a reduced arteriovenous pressure gradient. intramedullary impairment of autoregulation, and hypoxia [37, 44]. In patients with intradural AVMs, neurological presentations are probably caused by high-pressure, high-volume, turbulent blood flow through the intradural nidus and its feeding and draining channels. Increased venous pressure as well as arterial steal attributes spinal cord ischemia due to reduction of tissue perfusion pressure [45]. Spinal epidural (extradural) AVFs are very rare, but may cause a compressive myelopathy due to a presence of a venous pouch in the epidural venous plexus. It may or may not develop venous congestion due to retrograde intradural venous drainage [46].

Fig. 1. Schematic drawing of spinal AV shunt

References

- 1. Gandhi, D., et al., Intracranial dural arteriovenous fistulas: classification, imaging findings, and treatment. AJNR Am J Neuroradiol, 2012. 33(6): p. 1007-13.
- 2. Elhammady, M.S., S. Ambekar, and R.C. Heros, Epidemiology, clinical presentation, diagnostic evaluation, and prognosis of cerebral dural arteriovenous fistulas. Handb Clin Neurol, 2017. 143: p. 99-105.
- 3. Lasjaunias, P., et al., Neurological manifestations of intracranial dural arteriovenous malformations. J Neurosurg, 1986. 64(5): p. 724-30.
- 4. Al-Shahi, R., et al., Prospective, population-based detection of intracranial vascular malformations in adults: the Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke, 2003. 34(5): p. 1163-9.
- 5. Polster, S.P., et al., Patients with cranial dural arteriovenous fistulas may benefit from expanded hypercoagulability and cancer screening. J Neurosurg, 2018. 129(4): p. 954-960.
- 6. Lee, S.K., et al., Standard and Guidelines: Intracranial Dural Arteriovenous Shunts. J Neurointerv Surg, 2017. 9(5): p. 516-523.
- 7. Izumi, T., et al., Thrombophilic abnormalities among patients with cranial dural arteriovenous fistulas. Neurosurgery, 2007. 61(2): p. 262-8; discussion 268-9.
- 8. Morita, A., et al., Childhood dural arteriovenous fistulae of the posterior dural sinuses: three case reports and literature review. Neurosurgery, 1995. 37(6): p. 1193-9; discussion 1199-200.
- 9. Nishijima, M., et al., Etiological evaluation of dural arteriovenous malformations of the lateral and sigmoid sinuses based on histopathological examinations. J Neurosurg, 1992. 76(4): p. 600-6.
- 10. Borden, J.A., J.K. Wu, and W.A. Shucart, A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg, 1995. 82(2): p. 166-79.
- 11. Rowbotham, G.F. and E. Little, The circulations and reservoir of the brain. Br J Surg, 1962. 50: p. 244-50.
- 12. Chaudhary, M.Y., et al., Dural arteriovenous malformation of the major venous sinuses: an acquired lesion. AJNR Am J Neuroradiol, 1982. 3(1): p. 13-9.
- 13. Hamada, Y., et al., Histopathological aspects of dural arteriovenous fistulas in the transverse-sigmoid sinus region in nine patients. Neurosurgery, 1997. 40(3): p. 452-6; discussion 456-8.
- 14. Uranishi, R., H. Nakase, and T. Sakaki, Expression of angiogenic growth factors in dural arteriovenous fistula. J Neurosurg, 1999. 91(5): p. 781-6.
- 15. Chung, S.J., et al., Intracranial dural arteriovenous fistulas: analysis of 60 patients. Cerebrovasc Dis, 2002. 13(2): p. 79-88.
- 16. Kerber, C.W. and T.H. Newton, The macro and microvasculature of the dura mater. Neuroradiology, 1973. 6(4): p. 175-9.
- 17. Kojima, T., et al., The relationship between venous hypertension and expression of vascular

- endothelial growth factor: hemodynamic and immunohistochemical examinations in a rat venous hypertension model. Surg Neurol, 2007. 68(3): p. 277-84; discussion 284.
- 18. Kutluk, K., M. Schumacher, and A. Mironov, The role of sinus thrombosis in occipital dural arteriovenous malformations--development and spontaneous closure. Neurochirurgia (Stuttg), 1991. 34(5): p. 144-7.
- 19. Hacein-Bey, L., A.A. Konstas, and J. Pile-Spellman, Natural history, current concepts, classification, factors impacting endovascular therapy, and pathophysiology of cerebral and spinal dural arteriovenous fistulas. Clin Neurol Neurosurg, 2014. 121: p. 64-75.
- 20. Terada, T., et al., The role of angiogenic factor bFGF in the development of dural AVFs. Acta Neurochir (Wien), 1996. 138(7): p. 877-83.
- 21. Gao, P., et al., Nonischemic cerebral venous hypertension promotes a pro-angiogenic stage through HIF-1 downstream genes and leukocyte-derived MMP-9. J Cereb Blood Flow Metab, 2009. 29(8): p. 1482-90.
- 22. Cognard, C., et al., Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology, 1995. 194(3): p. 671-80.
- 23. Davies, M.A., et al., The validity of classification for the clinical presentation of intracranial dural arteriovenous fistulas. J Neurosurg, 1996. 85(5): p. 830-7.
- 24. Zipfel, G.J., et al., Cranial dural arteriovenous fistulas: modification of angiographic classification scales based on new natural history data. Neurosurg Focus, 2009. 26(5): p. E14.
- 25. Kashiwagi, N., et al., Spontaneous closure of non-cavernous sinus dural arteriovenous fistulas: A case series and systematic review of the literature. J Neuroradiol, 2020.
- 26. van Dijk, J.M., et al., Clinical course of cranial dural arteriovenous fistulas with long-term persistent cortical venous reflux. Stroke, 2002. 33(5): p. 1233-6.
- 27. Duffau, H., et al., Early radiologically proven rebleeding from intracranial cavernous angiomas: report of 6 cases and review of the literature. Acta Neurochir (Wien), 1997. 139(10): p. 914-22.
- 28. Satomi, J., et al., Benign cranial dural arteriovenous fistulas: outcome of conservative management based on the natural history of the lesion. J Neurosurg, 2002. 97(4): p. 767-70.
- 29. Cognard, C., et al., Long-term changes in intracranial dural arteriovenous fistulae leading to worsening in the type of venous drainage. Neuroradiology, 1997. 39(1): p. 59-66.
- 30. Luciani, A., et al., Spontaneous closure of dural arteriovenous fistulas: report of three cases and review of the literature. AJNR Am J Neuroradiol, 2001. 22(5): p. 992-6.
- 31. Sivakumar, W., et al., Endovascular management of spinal dural arteriovenous fistulas. A review. Neurosurg Focus, 2009. 26(5): p. E15.
- 32. Rosenblum, B., et al., Spinal arteriovenous malformations: a comparison of dural arteriovenous fistulas and intradural AVM's in 81 patients. J Neurosurg, 1987. 67(6): p. 795-802.
- 33. Mourier, K.L., et al., Intradural perimedullary arteriovenous fistulae: results of surgical and endovascular treatment in a series of 35 cases. Neurosurgery, 1993. 32(6): p. 885-91; discussion 891.

- 34. Rangel-Castilla, L., et al., Spinal extradural arteriovenous fistulas: a clinical and radiological description of different types and their novel treatment with Onyx. J Neurosurg Spine, 2011. 15(5): p. 541-9.
- 35. Takai, K., Spinal Arteriovenous Shunts: Angioarchitecture and Historical Changes in Classification. Neurol Med Chir (Tokyo), 2017. 57(7): p. 356-365.
- 36. Geibprasert, S., et al., Dural arteriovenous shunts: a new classification of craniospinal epidural venous anatomical bases and clinical correlations. Stroke, 2008. 39(10): p. 2783-94.
- 37. Morris, J.M., Imaging of dural arteriovenous fistula. Radiol Clin North Am, 2012. 50(4): p. 823-39.
- 38. Koch, C., Spinal dural arteriovenous fistula. Curr Opin Neurol, 2006. 19(1): p. 69-75.
- 39. Fugate, J.E., G. Lanzino, and A.A. Rabinstein, Clinical presentation and prognostic factors of spinal dural arteriovenous fistulas: an overview. Neurosurg Focus, 2012. 32(5): p. E17.
- 40. Marcus, J., et al., Spinal dural arteriovenous fistulas: a review. Curr Atheroscler Rep, 2013. 15(7): p. 335.
- 41. Bahar, S., et al., Spontaneous vertebro-vertebral arterio-venous fistula associated with fibro-muscular dysplasia. Report of two cases. Neuroradiology, 1984. 26(1): p. 45-9.
- 42. Hoffman, H.B. and M. Bagan, Cervical epidural arteriovenous malformation occurring with a spinal neurofibroma. Case report. J Neurosurg, 1967. 26(3): p. 346-51.
- 43. Partington, M.D., et al., Cranial and sacral dural arteriovenous fistulas as a cause of myelopathy. J Neurosurg, 1992. 76(4): p. 615-22.
- 44. Hurst, R.W., et al., Spinal dural arteriovenous fistula: the pathology of venous hypertensive myelopathy. Neurology, 1995. 45(7): p. 1309-13.
- 45. Aminoff, M.J., R.O. Barnard, and V. Logue, The pathophysiology of spinal vascular malformations. J Neurol Sci, 1974. 23(2): p. 255-63.
- 46. Nasr, D.M., et al., Clinical presentation and treatment outcomes of spinal epidural arteriovenous fistulas. J Neurosurg Spine, 2017. 26(5): p. 613-620.

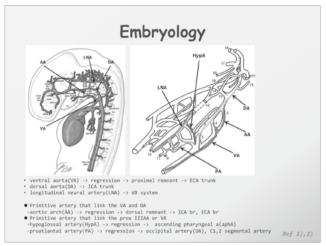
Pathological vascular anatomy for dural AVF

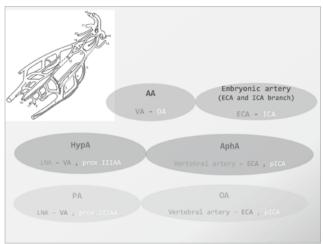
조수희

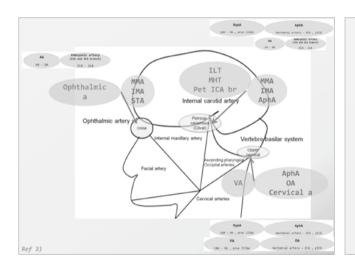
울산대 강릉아산병원 신경외과

Pathological vascular anatomy for dural AVF

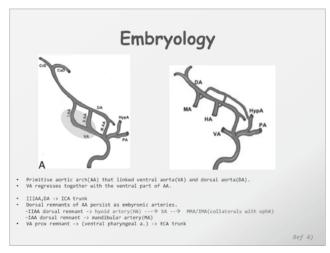
울산대학교 강릉아산병원 조수희

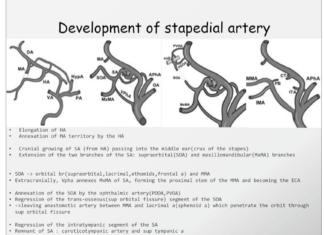

- · Clinical anatomy for safe and effective endovascular treatment of dural AVF
- Dangerous EC-IC anastomoses
- Arterial supply of the cranial nerve

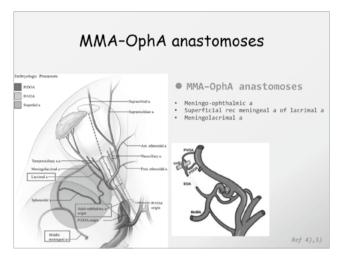

Dangerous EC-IC anastomoses

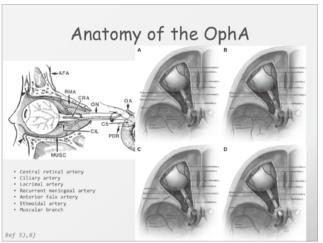

clinical significance

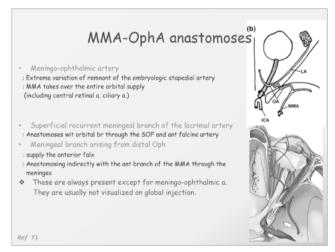
- Cause of major complication
- -Migration of embolic materials into anastomotic channels can result in embolic strokes or cranial nerve palsies.
- -Most of these anastomotic channels follow the CN along the neural
- · "Potential" anastomoses
- Although they may not be visualized on routine catheter angiographies, they are always present.
- -They will necessarily open under following circumferences
 - 1) increased intra-arterial pressure
 - (during embolization procedures or superselective injection)
 2) in the presence of high-flow shunts

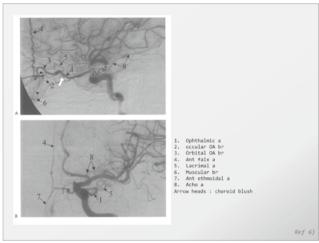

 - 3) major intracranial artery occlusion

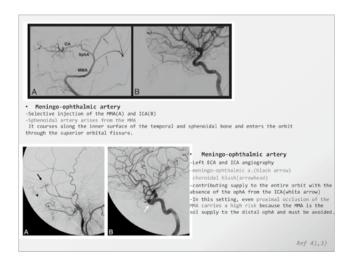


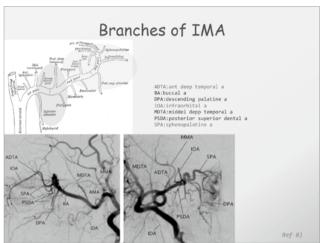


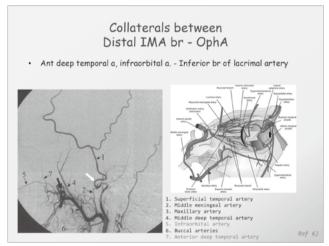


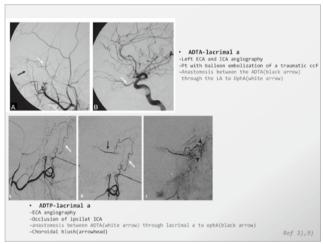

• Orbital region 1)Proximal internal maxillary collaterals 2)distal internal maxillary collaterals 3)cutaneous collaterals • Cavernous-petrous region 1)ascending pharyngeal collaterals 2)proximal internal maxillary collaterals 3)distal internal maxillary collaterals 1)distal internal maxillary collaterals 2)proximal internal maxillary collaterals 3)distal internal maxillary collaterals 2)ascending pharyngeal collaterals 3)cervical collaterals

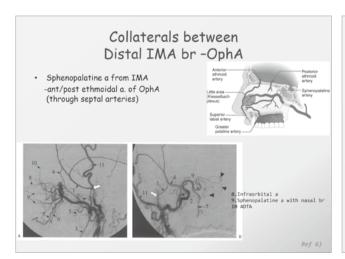


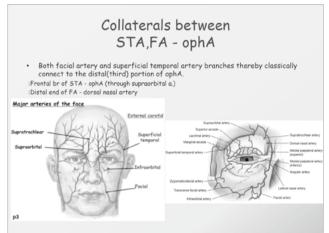


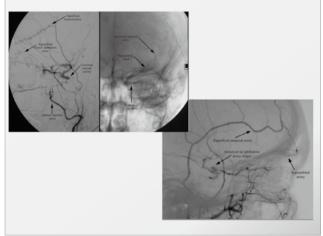








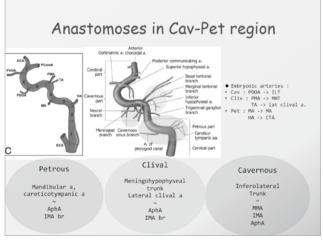




Orbital region

1)Proximal internal maxillary collaterals
2)distal internal maxillary collaterals
3)cutaneous collaterals

 Cavernous-petrous region
1)ascending pharyngeal collaterals
2)proximal internal maxillary collaterals
3)distal internal maxillary collaterals
4) Upper cervical region
1)occipital collaterals
2)ascending pharyngeal collaterals
3)cervical collaterals
3)cervical collaterals

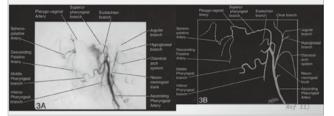


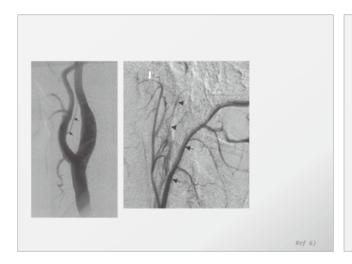
		y and their anastomoses to the E	FCA Branch					
phthalmic Artery Branch		Ophthalmic Branch		501 0101011				
oximal lacrimal artery (main branch)	Second po		MA (through superior					
istal lacrimal artery (inferior branch) nterior ethmoidal arteries	Second por Third portion		Anterior deep temporal artery and infraorbital artery (IMA Septal arteries: sphenopalatine artery (IMA), MMA					
osterior ethnoidal arteries			Sphenopalatine artery, greater palatine artery (IMA), MMA Sphenopalatine artery, greater palatine artery (IMA), MM					
upraorbital artery			sprenopalatine artery, greater palatine artery (IMA), MN STA					
orsal nasal artery			Angular termination of FA, infraorbital artery					
	Lacrimal a.	MMA	47.14% [12]	37.7% [10]	0.80			
Name	OA branch	ECA branch	Anat. F.	Ang. F.	VI			
	Lacrimal a	MMA	47 146 (12)	37.7% (10)	0.50			
Meningo-ophthalmic a.	OA itself	MMA	ND ND	31.1% [10]	-			
	Lateral muscular a.	MMA	5.71% [12]	ND	-			
A. of the superior orbital fissure	Deep recurrent OA	Maxillary a.	ND	3% [32]	-			
	Lacrimal a.	Anterior deep temporal a.	ND	33.3% [10]	-			
	Lacrimal a.	Transverse facial a.	ND	ND	-			
	Lacrimal a.	Orbital branch of the infraorbital	a. ND	ND	-			
	Lacrimal a.	Zygomaticoorbital a.	ND	2.22% [10]	-			
	Dorsal nasal a.	Facial a.	60% [7]	8.9% [10]	0.15			
	Dorsal nasal a.	Orbital branch of the infraorbital	a. 27% [7]	6.6% [10]	0.24			
	Supraorbital a.	Superficial temporal a.	33% [7]	2.22% [10]	0.07			
	Supraorbital a.	Zygomaticoorbital a.	ND	2.22% [10]	-			
	Supratrochlear a.	Superficial temporal a.	ND	2.22% [10]	-			
			ND	ND				
	Anterior ethmoidal a.	Sphenopalatine a.	ND	ND	-			

OA Branches	Origin from the OA	Foramen	Dural Territory	Possible Anastomosis	Clinical Consequences in Case of Embolism
Deep recurrent OA	First segment	Superior orbital fissure	Superior orbital fissure (lateral part), sphenoid wing	Inferolateral trunk (ICA)	Cerebrovascular accident
Superficial recurrent OA	Second segment	Superior orbital fissure	Anterior clinoid process Lesser sphenoid wing Middle fossa (anteromedial portion)	Posterior ethmoidal artery MMA (anterior division) Medial tentorial artery (ICA)	Cerebrovascular accident, loss of vision
Anterior ethmoidal artery	Third segment	Anterior ethmoidal canal	Anterior convexity (anterior meningeal artery) Anterior cranial fossa (medial third) Anterior falx cerebri (anterior falcine artery)	Contralateral anterior ethrnoidal artery Bilateral MMAs Posterior ethrnoidal artery Olfactory branch (ACA)	
Posterior ethmoidal artery	Third segment	Posterior ethmoidal canal	Anterior cranial fossa (medial third) Anterior clinoid process Chiasmatic groove	Contralateral posterior ethmoidal artery Anterior ethmoidal artery MMA (anterior division)	

Ref 10)

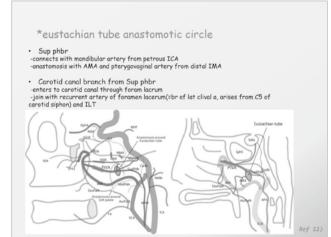
- Orbital region

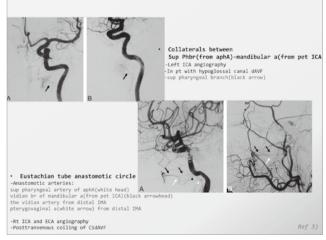

 1)Proximal internal maxillary collaterals
 2)distal internal maxillary collaterals
- 3)cutaneous collaterals


· Cavernous-petrous region

- 2)proximal internal maxillary collaterals 3)distal internal maxillary collaterals
- · Upper cervical region
- 1)occipital collaterals 2)ascending pharyngeal collaterals 3)cervical collaterals

Ascending pharyngeal artery


- After a short common trunk, aphA Divides into two major trunks.
- -ant : pharyngeal trunk(extracranial br)
 -Post :neuromeningeal trunk(intracranial br) enters the posterior fossa through the foramen magnum
- Inf tympanic br
 Musculospinal artery

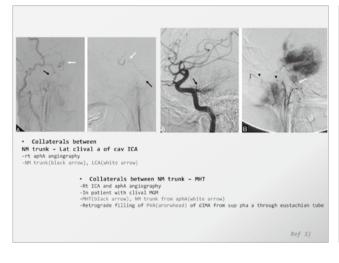


Collaterals between Pharyngeal trunk of AphA - pet/cav ICA br

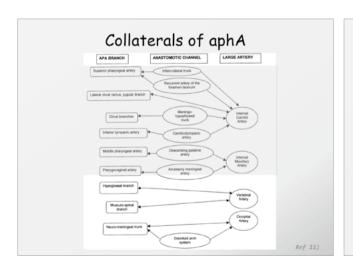
- Pharyngeal trunk
- -Anteriorly located branches from aphA common trunk
- -3 branches : inf/mid/sup pharyn a. -These supply the pharyngeal submucosal spaces
- -Abundant arterial anastomoses exist with the sphenopalatine system.
- · Sup br has most important anastomotic routes.
- collaterals with AMA, pterygovaginal a. from IMA
- collaterals with rec a of foramen laceraum(from lat clival a.), br of ILT

Collaterals between NM trunk of aphA - LCA, MHT

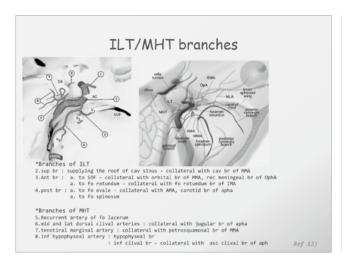
- 2 branches : jugular br and Hypoglossal br Rarely, NM trunk may arises from occipital artery or post auricular artery
- Both branches give off medial and lat cliaval br immediately after exiting the hypoglossal and jugular foramen. These branches anastomoses with clival branches from lateral clival artery(from cav ICA) and branches from meningohypophseal trunk.

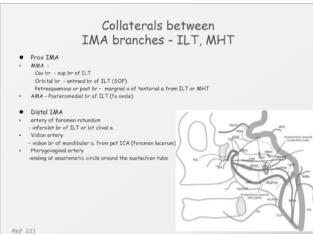

- : extends to the posterior fossa to the hypoglossal canal : supplies the meninges of post fossa and vasa nervorum of CN XII
- Jugular br
 extends to the post fossa to the jugular foramen

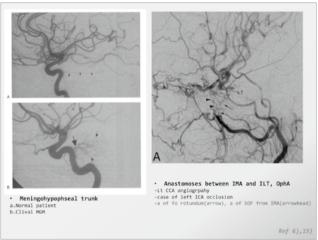
:supplies vasa nervorum of CN IX,X,XI :leaves the jugular foramen to supply

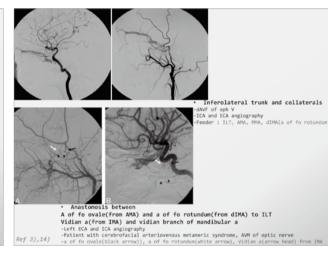

~ (superiorly)meninges of the int aucitory canal

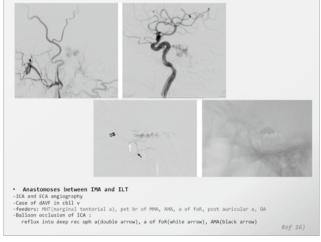
(medially)dura of inf petrosal sinus and vasa nervorum to CN VI proximal to Dorello's canal

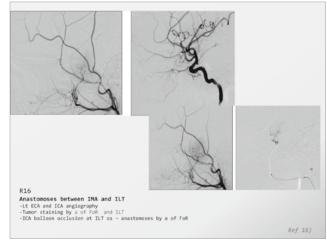

(laterally)dura of sigmoid sinus

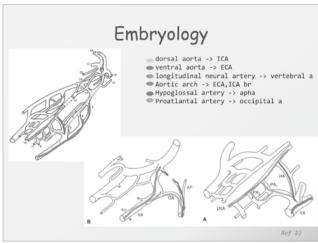


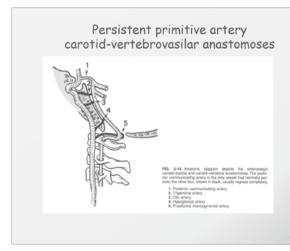

· Inf tympanic artery -Arise from main trunk of asc pha a or one of its major br -Most commonly crises from the prox aspect of NM trunk -Enters the tympanic cavity through inf tympanic foremen with Jacobson's nerve -It is close to CN IX and provide rami to the caroticopympanic branch of ICA, vasa nervorum of CN XI, vasa vasorum of ICA. Retains the emryalogic connection of the artery of the third brachial arch(Asc ph a) and the hyoid artery(or coroticotympanic a) from the petrous ICA --Ineide middel ear, cneatemoses with sup tymponic o(crise from petrous br of MMA), ant tymponic a(from prox IMA), stylomastoid a(from post auricular-OA), mondibular br(of ICA)

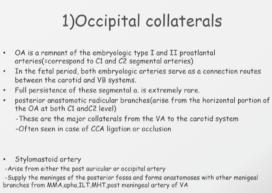


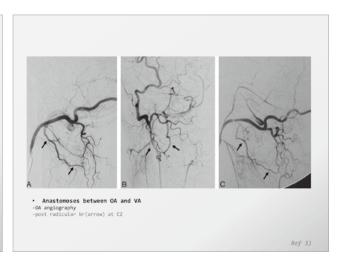

 Orbital region 1)Proximal internal maxillary collaterals 2)distal internal maxillary collaterals 3)cutaneous collaterals Cavernous-petrous region 1)ascending pharyngeal collaterals 2)proximal internal maxillary collaterals
 3)distal internal maxillary collaterals • Upper cervical region
1)occipital collaterals
2)ascending pharyngeal collaterals 3)cervical collaterals









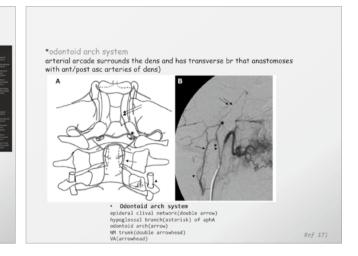


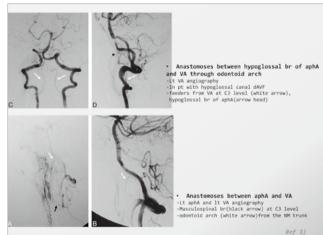
Anastomoses between OA and VA
-VA angiography
-OA(black arrow), post radicular br(white arrow) at C1

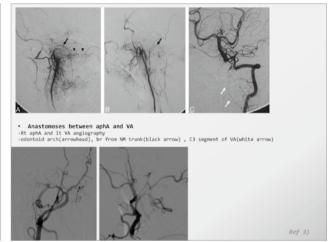
Ref 6),3)

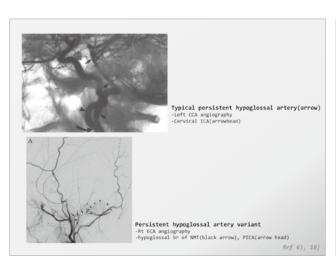
2) Ascending pharyngeal collaterals

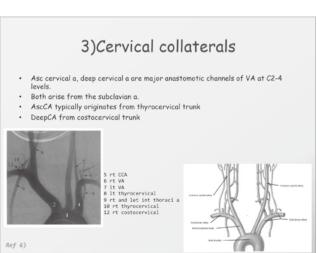
- Remnant of the embryologic hypoglossal artery
 Keeps connection with the VA through prox br.

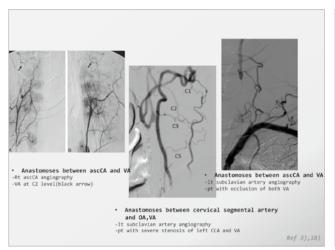


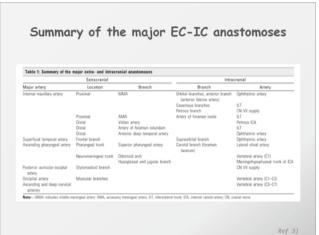

- Anastomoses with most superior br of asc cervical artery at C3 and with deep cervical a
 Supply the vasa nervorum to CN XI and sup sympathetic ganglion
- · Prevertebral br


:located on the ventral surface of the C1-2 vertebrae


typically arises from the neuromeingeal trunk , but may also arise directly from the main apha anastomoses with the odontoid arch


:characteristic U shaped curve before an astomosing medially on the surface of the dens with the $\it C3$ collaterals from VA





Arterial supply of the Cranial nerves

	Int	racranial Feeders		External Carotid Arteries Feeders	
Cranial Nerves	Intracisternal Vertebrobasilar Origin	Epidural Internal Carotid Artery (ICA) Origin	Skull Base Foramen		
Ш	PCA	MAT Anteromedial branch of the ILT	Superior orbital fissure	Ophthalmic, or lacrimal, or MMA tentorial branches	
IV	ASCA	MAT Anteromedial branch of the ILT	Superior orbital fissure	Ophthalmic, or lacrimal, or MMA tentorial branches	
V ₁	Remnant of the trigeminal artery	MAT Anteromedial branch of the ILT	Superior orbital fissure	Ophthalmic, or lacrimal, or MMA tentorial branches	
V ₂	Remnant of the trigeminal artery	Medial branch of the ILT to the artery of the foramen rotundum	Foramen rotundum	Artery of the foramen rotundum (distal maxillar artery)	
V ₃ and V _m	Remnant of the trigeminal artery	Posterior branch of the ILT, to the accessory meningeal artery	Foramen ovale	Accessory meningeal artery (proximal maxillar artery)	
VI		Clival arteries from ICA MAT and anteromedial branch of the ILT	Superior orbital fissure	Clival arteries from neuromeningeal trunk of APA	
VII	Auditory artery, branch of the AICA		Facial Canal Facial Canal Stylomastoid foramen	Petrous branch of MMA Stylomastoid artery from posterio auricular artery or Occipital artery	
VIII	Auditory artery, branch of the AICA		stylomatiolo foramen	Occipital artery	
DK .	Vertebral artery		Jugular Foramen (Pars nervosa)	Neuromeningeal trunk of APA (jugular branch)	
×	Vertebral artery		Jugular Foramen (Pars nervosa)	Neuromeningeal trunk of APA (jugular branch)	
XI	Vertebral artery		Jugular Foramen (Pars nervosa)	Neuromeningeal trunk of APA (jugular branch)	
XII	Vertebral artery		Hypoglossal canal	Neuromeningeal trunk of APA (hypoglossal branch)	

References)

- Bertulli L, Robert T.Bertulli L, et al. <u>Embryological development of the human cranio facial anterial systems a pictorial review.</u>
 Surg Badiol Anat. 2021
 Lalajanian P, et al. <u>Surgical Neuro-angiography</u>, 2nd edition
 Galpianian P, et al. <u>Surgical Neuro-angiography</u>, 2nd edition
 Galpianian P, et al. <u>Surgical Neuro-angiography</u>, 2nd edition
 Galpianian P, et al. <u>Surgical Neuro-angiography</u>, 2nd edition
 <u>Embryological Interactional Interactional Anatomoses and Surgical Neuro-Angiography</u>, 2nd editional Embryology to Childrent Location Adult
 <u>Embryology to Childrent P. Anatomoses A et al. <u>Empedial Anetry from Embryology to Childrent Footbla Adult</u>
 <u>Gallout P, Group B, Neuro-Gallout P, Group P, et al. Developmental anatomy</u>, angiography, and elinical implications of orbital anterial anatomy includes the state-anatomy. *Per et al.* <u>Performental anatomy</u>, angiography, and elinical implications of orbital anterial anatomy. *Performental Computational Computatio</u>*

- Radiol Anat. 2017

 Tanoue S, Kiyosue H, Mori H, Hori Y, Ckahara M, Sagara Y,Tanoue S, et al. <u>Macillary artery, functional and imaging anatomy for sale and effective transcenteric treatment</u>. <u>Astrophysics</u>. 2013.

 Astronomy S, Kiyosue H, Mori H, Hori Y, Ckahara M, Sagara Y,Tanoue S, et al. <u>Macillary artery, functional and imaging anatomy for sale and effective transcenteric treatment</u>. <u>Astrophysics</u>. 2013.

 Astronomy S, Cercia G, Sport Thomasia S, et al. <u>Anatomic and Imbryologic Analysis of the Dural Branches of the Operation Control of the Care and Branches of the Dural Branches of the Macilla State of the Care and State of the Care and Branches of the State of the Care and State of the Dural Branches of the State of the Care and State of the S</u>

- Neuroinners Surg. 2020
 Récision DH, Song E, Eskréga JM Robinson DH, et al. <u>Embedization of meningolypophysical and inferestateral branches of the decremons inferent interest attended active. Am I Neuroandoc 1999
 Ophthalmic Vein Active of Temperature Conference and the Conference Con</u>
- coast to the undust Ages, Connecting with the Anteromedial Branch of the Interclateral Trusk, ANR Am 3 Neurosadol Myamoto N. Inferolateral Trusk and its clinical significance. Ozanne A. Pereira V. Krings T. Toulgoate F. Larjaunias P.Ozanne A. et al. <u>Arterial vascularization of the cranial nerves.</u> Neuroimaging Clin J Am. 2008
- Namba K. Carotid-vertebrobasilar Anastomoses with Reference to Their Segmental Property. Neurol Med Chir (Tokyo)

Clinical features and natural history, treatment indication

송지혜

아주대병원 신경외과

2021 대한뇌혈관 내치료의학회 준계 보수 교육

SESSION I. ANATOMY AND PATHOPHYSIOLOGY OF DURAL ARTERIOVENOUS FISTULA

- 1. PATHOPHYSIOLOGY
- 2. VASCULAR ANATOMY
- 3. CLINICAL FEATURES, NATURAL HISTORY, AND TREATMENT INDICATION

Jihye Song, MD., PhD

Associate Professor, Department of Neurosurgery Ajou University School of Medicine, Suwon, Republic of Korea

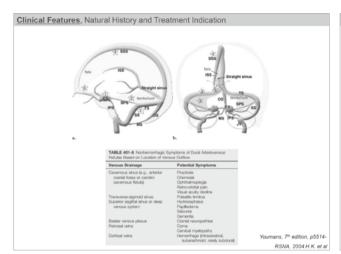
Dura arteriovenous fistula (dAVF)

- dAVF can occur anywhere within dura mater
- Rare disease \rightarrow limited the sizes of case series examining the untreated clinical course of dAVF
- Incidence: 0.16 0.29/100 000 adults/year
- 10-15% of intracranial vascular malformations
- Age; fifth and sixth decades
- Female predominance, dAVF men are more likely to display aggressive NEx and present hemorrhage
- Location & venous drainage pattern determines their clinical presentation and potential for serious sequlae

Stroke, 2015, 46:2017-2025, Miller et al.

Clinical Features, Natural History and Treatment Indication

Clinical features


- Clinical features: variable
- · dAVF can occur anywhere within dura mater
- Symptom (Sx): depending on their location, arterial supply, degree of arteriovenous shunting, magnitude of flow, and most importantly, their venous drainage pattern.
- Sx (-)
- · incidental finding on angiography
- generally small or located near the occiput and are not a/w CVD
- Sx (+)
- Mild symptoms
 - · headache, pulsatile tinnitus
 - ocular symptoms

Youmans, 7th edition, p5514-

Clinical Features, Natural History and Treatment Indication

Clinical features

- Non-hemorrhagic neurologic deficit (NHND)
 - seizure, dementia, parkinsonism, cerebellar symptoms, apathy, cranial nerve abnormalities, rarely trigeminal neuralgia, cervical myelopathy,
 - global or focal (or both) neurological deficits that may be transient or progressive Related to the presence of associated CVD and venous congestion in the affected vascular territory
- Hemorrhage
 - · Overall hemorrhage presentation: 10-34%
 - Risk factor: cortical venous drainage (CVD), presentation, location (posterior fossa), male sex, and increasing age.

Clinical Features, Natural History and Treatment Indication

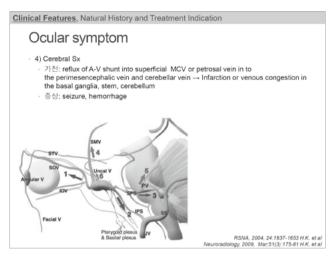
Headache

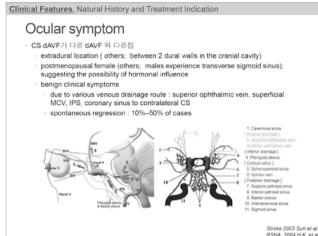
- Common initial symptom
- Unilateral on the side of the dAVF or generalized
- frequently exacerbated by physical activity or changes in position
- Mechanism
 - engorgement of innervated venous collaterals with dural sinus distention
 - brain edema secondary to venous hypertension
 - compression of the trigeminal nerve
 - inflammation as a result of venous thrombosis
- More worrisome causes of headaches include associated hemorrhage, hydrocephalus, or pseudotumor secondary to generalized venous hypertension

Youmans, 7th edition, p5514

Clinical Features, Natural History and Treatment Indication Ocular symptom MC Sx of cavernous sinus(CS) dAVF are ocular symptoms caused by anterior venous drainage MC Sx of cavernous sinus(CS) dAVF are ocular symptoms caused by anterior venous drainage Frontal Sup. Outschalanic Superficial middle Exercise Supp. Photosal Ind. Phytography Symptoms (Cavernous sinus Supp. Photosal Ind. Phytography Supp. Phytograp

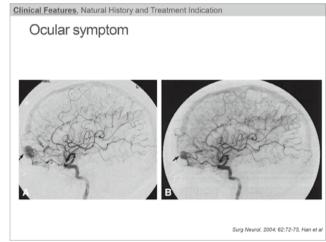
Stroke 2005 Suh et al.

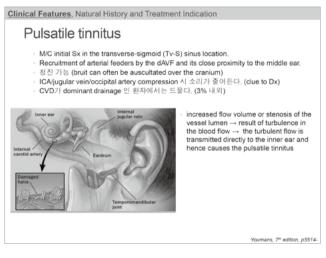

Clinical Features, Natural History and Treatment Indication Ocular symptom - 1) Orbital Sx - 기전: CS 로 부터의 retrograde venous flow and/or pressure from CS - 중심: Chemosis, exophthalmos, periorbital pain, eyelid swelling

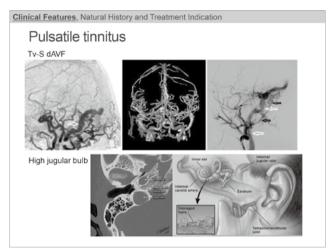

Clinical Features, Natural History and Treatment Indication Ocular symptom - 2) Cavernous Sx - 기업: Cranial nerve deficit due to bulging or elevated pressure of CS and/or to the steal phenomenon of blood supply to the cranial nerve - 중 성: diplopia, ptosis, anisocoria, ophthalmoplegia

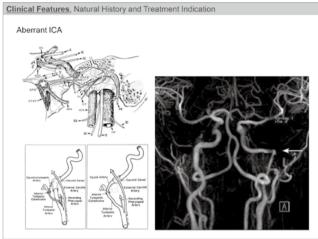

Clinical Features, Natural History and Treatment Indication Ocular symptom - 3) Ocular Sx - 기전: increased venous pressure draining the eyeball - 중상 - decreased vision (subjective symptom or interocular difference of >0.2) - increased intraocular pressure (>20mmHg or interocular difference of >5mmHg) - eyeball pain, retinal hemorrhage - Visual loss - one of the most serious consequences of CSdAVF - retinal ischemia - intaorbital venous pressure 중가 - intaocular pressure 중가

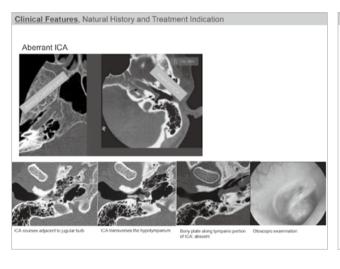
Stroke 2005 Suh et al.

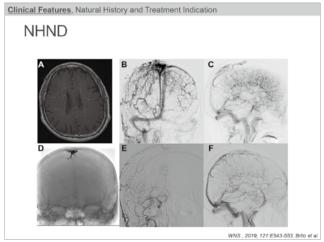

Stroke 2005 Suh et al.

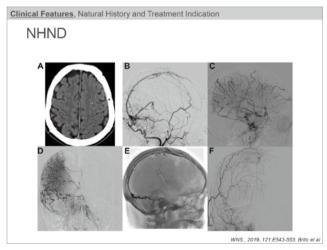


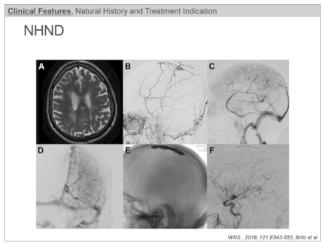


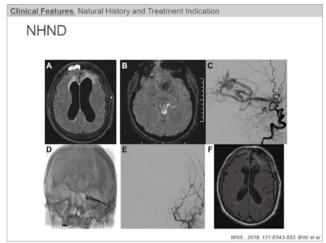

Stroke 2005 Suh et al. RSNA, 2004 H.K. et al.

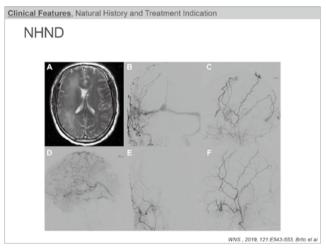


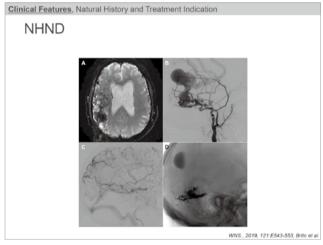


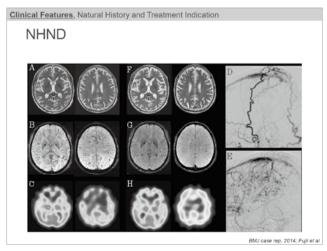


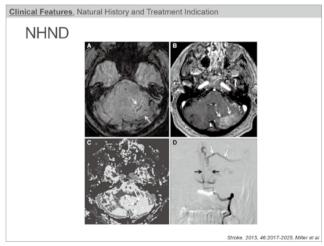

Clinical Features, Natural History and Treatment Indication


NHND


- seizure, dementia, parkinsonism, cerebellar symptoms, apathy, cranial nerve
- abnormalities, rarely trigeminal neuralgia, cervical myelopathy global or focal (or both) neurological deficits that may be transient or progressive
- related to the presence of associated CVD and venous congestion in the affected
- vascular territory related to cerebrospinal fluid malabosorption
- cranial nerve palsies
 - because of an arterial steal phenomenon or occasionally mass effect from an enlarged arterial feeder
- extra-axial hemorrhage in the cervical spine, as well as cervical and upper thoracic







Clinical Features, Natural History and Treatment Indication

Hemorrhage

- ICH (Intracerebral hemorrhage), SAH, rarely SDH
- Hemorrhage is the initial presentation of DAVF in up to 34% of patients, most commonly occurring in men between the ages of 50 and 70 years.
- Patients with retrograde cortical venous drainage have a higher likelihood of initially presenting with hemorrhage

Youmans, 7th edition, p5514-

Clinical Features, Natural History and Treatment Indication

Natural History

- Rare disease → limited the sizes of case series examining the untreated clinical course
 - Incidence: 0.16 0.29/100 000 adults/year
 - 7% -15% of intracranial vascular malformations
- Overall annual hemorrhage risk for unruptured dAVF: 1.5% to 2%/yr
- Individual patient risk depends on several factors
- Venous drainage pattern (cortical venous drainage(CVD))
- · Presenting symptom
- Venous ectasia
- Location

Youmans, 7th edition, p5514-Neurosurgery, 2012;71:594-602, B.A. Gross et al Neurosurgical Focus, 2009;26:£14 Zipfel et al

Clinical Features, Natural History and Treatment Indication

Venous drainage pattern

Borden		Cognard	
1	Drainage into a dural venous sinus without CVD	1	Drainage into a dural venous sinus with antegrade sinus flow
		lla	Drainage into a dural venous sinus with retrograde sinus flow
	Drainage into a dural venous sinus with cortical venous reflux	llb	Drainage into a dural venous sinus with antegrade sinus flow and cortical venous reflux
		lla+b	Drainage into a dural venous sinus with retrograde sinus flow and cortical venous reflu
III	Direct CVD	III	Direct CVD
		IV	Direct CVD with vein ectasia
		V	Spinal perimedullary venous drainage

Clinical Features, Natural History and Treatment Indication

Venous drainage pattern

· Borden type I; benign

- Satomi et al (68 observation <112 Pt with Borden type I dAVF)
 - Observation :68/112 (60.7%)
 - Tolerable/stable: 67/68 (98.5%) & Seizure as a result of ICH after CVD development: 1(1.5%)
 - Long term f/u in 50 Patients: Change in venous drainage pattern: 5 (2; CVD (+) \rightarrow Tx)
 - Palliative treatment : 44/112 (39.3%) (due to unbearable Sx or pressing ophthalmological Sx)
- No hemorrhage & no NHND over mean f/u of 27.9 mo
- Progressed to CVD ; 4% (2/50)
- New NHND: 1.5% (1/68)

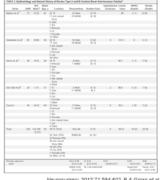
Clinical Features, Natural History and Treatment Indication

Venous drainage pattern

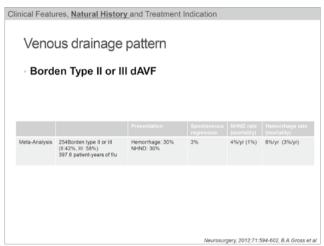
Borden type I; benign

- Gross et al (16 observation < 24 Borden type I< 56 patients with 70 dAVF)
 - No hemorrhage for 409 lesion- years
 - Progressed to CVD; 0
 - Meta-analysis) CVR developed: 1.4%
- spontaneous resolution; 3명 (3/24, 13%)

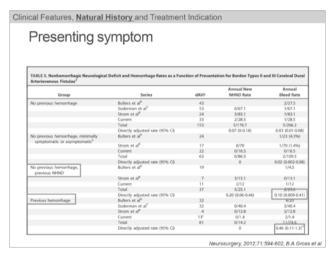
Borden Type	dAVF	M:F Ratio	Mean Age, y	Location	Presentation	Lesion-Years	NHND	Annual NHND Rate	Bleeds	Annual Bleed Rat
1	24	15:9	48	12 TS	0 NHND	60.9	0	0	0	0
				5 555	0 Hem					
				4 Other						
				3 Cav						

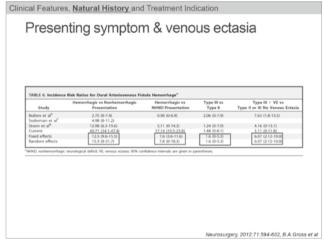

Neurosurgery, 2012;71:594-602, B.A. Gross et al.

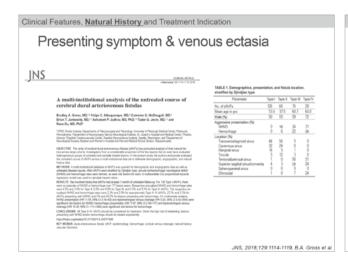
Clinical Features, Natural History and Treatment Indication

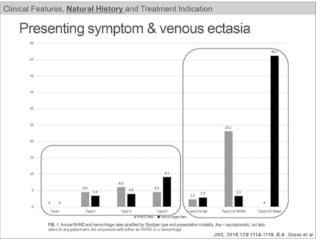

Venous drainage pattern

Borden Type II or III dAVF


CVD (+) few natural history studies




Neurosurgery, 2012;71:594-602, B.A. Gross et al.



Presentin	g s	symptom			
Report	No.	Presenting Sx	Hemorrhage risk	NHND	mortalit
Zipfel et al		Asymptomatic + CVD (+)	1.4-1.5% /yr		
		NHND or hemorrhage	7.4-7.6%/yr		
Bluters et al		Hemorrhage (-)			
		Hemorrhage			
Soderman et al	32	Hemorrhage	7.4%/уг		
(85 Borden type II or III dAVF)	53	No Hemorrhage	1.5%/yr		
Strom et al	11	Hemorrhage/NHND	7.6%/yr	11.4%/yr	3.8%/yr
(24 Borden type II or III dAVF)	7	Sx (-) / tinnitus/ orbital Sx	1.4%/yr	0%/yr	0%/yr
Meta-Analysis		Sx (-) / tinnitus/ orbital Sx	2%/yr	0% for 86.5 lesion-year	
254 Borden type II or III dAVF	63	NHND	10%/yr	20% /yr	
		Hemorrhage	46%/yr		
		Hemorrhage (-)	3.0%/yr		

Clinical Features, Natural History and Treatment Indication

Location

- Cavernous dAVF
 - 84% were type I
 - very low overall risk of hemorrhage
- Anterior fossa, tentorial, petrosal dAVF
 - Vast majority were type III
- Highly aggressive
- Lawton et al.
 - hemorrhagic presentation in 55% (17 of 31) for tentorial dAVF

Location	Total No.	Type I, No. (%)	Type II, No. (%)	Type III, No. (%)
Transverse-sigmoid	125	71 (57)	44 (35)	10 (8)
Cavernous	63	53 (84)	7 (11)	3 (5)
Tentorial	35	0	5 (14)	30 (86)
Petrosal	18	1 (6)	3 (17)	14 (78)
Superior sagittal sinus	17	6 (35)	4 (24)	7 (41)
Anterior cranial fossa	10	1 (10)	0	9 (90)
Toecular	7	1 (14)	3 (43)	3 (43)

roke, 2015, 46:2017-2025, Miller et al

Clinical Features, Natural History and <u>Treatment Indication</u>

Treatment indication

- Based on patient characteristics, symptom severity, and risk of serious sequelae (CVD/presentation/venous ectasia/location)
- Low-grade lesions with severe debilitating symptoms (eg, severe tinnitus or visual symptoms resulting in poor quality of life) are candidates for treatment
- Conservative treatment / Endovascular therapy (transvenous /transarterial) Radiation therapy / Surgery

Clinical Features, Natural History and <u>Treatment Indication</u>

Cavernous sinus dAVF

- Benign clinical course
- Spontaneous regression in 10-50%

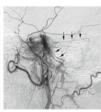
- Conservative management for 1–3 months with close clinical Sx and image f/u

 New Sx or progression of existing Sx

 Dangerous drainage patterns

 Should be aware that the low-risk drainage patterns of dural AVFs develop into high-risk patterns with progressive thrombosis or restriction of the cavernous sinus outlet without symptom change

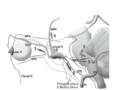
- CS dAVF 에서 즉각적 치료 필요한 경우

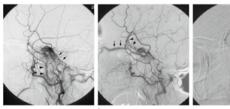

 1) increased ICP

 2) rapidly progressing proptosis
 3) diminished visual acuity
 4) hemorrhage, TIAs
 5) dangerous venous patterns
 (a) cotical venous reflux without other venous drainages (hemorrhagic infarction)
 (b) dominant deep venous drainage (hemorrhage, edema)
 (c) thrombosis of the central retinal vein (blindness)

Clinical Features, Natural History and Treatment Indication

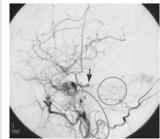
Cavernous sinus dAVF


RSNA, 2004 H.K. et al


Clinical Features, Natural History and Treatment Indication

Cavernous sinus dAVF

Sx) mild chemosis, proptosis, diplopia


RSNA, 2004 H.K. et al

Clinical Features, Natural History and <u>Treatment Indication</u>

Cavernous sinus dAVF

F/56

Sx) headache, possible ataxia

RSNA, 2004 H.K. et al.

Clinical Features, Natural History and <u>Treatment Indication</u>

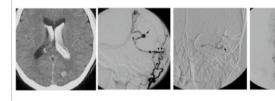
Transverse sigmoid dAVF

- Most common symptoms are benign (pulsatile tinnitus and headache)
- Transverse-sigmoid sinus dural AVFs are more frequently associated with hemorrhagic and NHND than are CS dural AVFs
- All transverse-sigmoid sinus dural AVFs are considered to require treatment because of the low rate of spontaneous regression without symptomatic events and the relatively high rate of aggressive symptoms

Clinical Features, Natural History and <u>Treatment Indication</u>

Tentorial dAVF

- Retrograde leptomeningeal venous drainage system only
 - high risk of aggressive neurologic symptoms Hemorrhage rate: 60% to 74% (19%/yr)


 - NHND: (10%/yr)

			Location		
Symptom	Cavernous Sinus (%)	Transverse-Sigmoid Sinus (%)	Tentorium (%)	Superior Sagittal Sinus (%)	Anterior Fossa (%)
Ocular symptoms	80-97				
Cranial nerve deficits	44-77	7-12	14-17		
Bruit, tinnitus	40-50	40-42	70-88		
Headache		46-76	8-24	50	12-15
Visual symptoms	28-38	12-28			
Central nerve deficits	3	10-20	23-42	29	5-33
Intracranial hemorrhage	Rare	15-28	60-74	23	44-84
Dementia		Rare		5	

RSNA, 2004 H.K. et al

Clinical Features, Natural History and <u>Treatment Indication</u>

Tentorial dAVF

Clinical Features, Natural History and <u>Treatment Indication</u>

Superior sagittal sinus dAVF

- frequently associated with restrictive change of the superior sagittal sinus and retrograde cortical venous drainage, aggressive neurologic symptoms are seen in one-
- Venous congestion of the bilateral frontal lobes due to a superior sagittal sinus dural AVF can cause dementia
- The dementia can be misdiagnosed as a psychogenic or degenerative disorder but can be cured after treatment of the dural AVF

Clinical Features, Natural History and Treatment Indication

Anterior fossa dAVF

venous drainage pattern similar to that of tentorial dural AVFs with retrograde leptomeningeal drainage and are frequently associated with hemorrhage or NHND

Clinical Features, Natural History and <u>Treatment Indication</u> Anterior fossa dAVF JKNS, 2009;47:455-157, Cho et al.

THANK YOU FOR YOUR ATTENTION

2021 대한뇌혈관내 치료의학회 춘계보수교육

Special symposium

좌장: 윤석만 (순천향대), 고준석 (경희대)

KoNES 뇌졸중 시술 인증제의 발전 방향

KoNES 뇌혈관센터 구성안

신희섭 (경희대)

신승훈 (차의과학대)

KoNES 뇌졸중 시술 인증제의 발전 방향

신희섭

강동경희대병원 신경외과

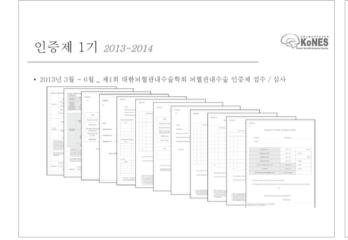
KoNES 뇌졸중시술 인증제의 발전방향

대한뇌혈관내치료의학회 뇌졸중시술 인증관리위원회

목차

- . 인증제 연혁
- Ⅱ. 인증제 현황 및 개요
- Ⅲ. 인증제 발전 방향

인증제 태동 2010-2012



- 2010년 8월 🙎 뇌혈관내수술 인증제 TFT 구성 (이사: 김범태)
 - _ TFT 회의, 전문가 공청회, 워크샵
- 2012년 7월 💹 '우리나라 뇌혈관내수술 인증의 인증기관 수련기관 규정 연구결과 보고서' 발간
- 2012년 10월 _ 대한신경외과학회 제52차 추계학술대회 런천세미나

뇌혈관대 수술 인증의제도, 의의 및 세투사항 : 백민우 (가톨릭대) 타과 권문분야의 인증의제도 소개 (성혈관중제술) : 권은선 (경희대) 우리나라 뇌혈관대수술 인증의제도, 준비 및 경과보고 : 김별대 (순설량대)

• 2012년 11월 _ '대한뇌혈관내수술학회 산하 뇌혈관내수술 인증위원회' 구성 (인증위원장: 김범태)

인증제 1기 2013-2014

KONES

- 2013년 6월 _ 제1회 대한뇌혈관내수술학회 뇌혈관내수술 인증제 합격 발표
 - 인증의 127명 / 인증기관 55개소 합격
 - _ 뇌혈관내치료 유관 학회 최초 인증제 / 최초 인증의 / 최초 인증기관
- 2012년 10월 _ 대한신경외과학회 제53차 추계학술대회 런천세미나

일본되일관내수술의 헌황과 전망: Tamoaki Terrada (Wakayama Medical College) 일본뇌혈관내치료학회 연증의 제도의 현황 : Tamoaki Terrada (Wakayama Medical College) 대한되일관내수술학회 인증의 제도의 현환 : 김범태 (순천향대)

- 2014년 3월 _ 제2회 대한뇌혈관내수술학회 뇌혈관내수술 인증제 시행
 - 6월 _ 연증의 10명 / 연증기관 2개소 합격

인증제 2기 2015-2020

- 2014년 11월 _ 뇌혈관내수술 인증위원회 신임위원장 이호국
- 2015년 3월 _ 제3회 대한뇌혈관내수술학회 뇌혈관내수술 인증제 시행
 - _ 재인증 시행 (제1회 인증의/인증기관 中 일부)
 - 6월 _ 인증의 13명 (재인증 32명) / 인증기관 6개소 (재인증 10개소) 합격
- 2016년 6월 _ 제4회 인증제 _ 인증의 9명 (재인증 20명) / 인증기관 1개소 (재인증 9개소) 합격
- 2017년 6월 _ 제5회 인증제 _ 인증의 6명 (재인증 22명) / 인증기관 2개소 합격
- 2018년 6월 _ 제6회 인증제 _ 인증의 20명 (재인증 36명) / 인증기관 3개소 (재인증 29개소) 합격

인증 지원 / 제인증 증가 + 지원/심사의 편의성 증대 자료의 효율적 보관 인증제도의 연속성 화보

인증제 2기 2015-2020

- 2019년 3월 _ 인증제 (인증의 부문) 온라인 접수/심사 시스템 개발 완료 (유관기관 최초)
- 2019년 6월 _ 제7회 인증제 _ 인증의 20명 (재인증 10명) / 인증기관 2개소 (재인증 3개소) 합격
- 2020년 3월 _ 연증제 (인증기관 부문) 온라인 접수/심사 시스템 개발 완료
- 2020년 1월 _ '뇌졸중시술 인증제'로 명칭 변경
 - 6월 _ 제8회 인증제
 - _ 인증의 22명 (재인증 38명)
 - _ 인증기관 11개소 (재인증 14개소)

인증제 연혁 2013-2021

인도 인증제	01.25 ml	인증의 (병)		인증기관 (개소)	
6.75	인공제	신규인증	재인증	신규인증	재인증
2013	제1회 인증제	127	-	55	-
2014	제2회 인증제	10	-	2	-
2015	제3회 인증제	13	32	6	10
2016	제4회 인증제	9	20	1	9
2017	제5회 인증제	6	22	2	-
2018	제6회 인증제	20	36	3	29
2019	제7회 인증제	20	10	2	3
2020	제8회 인증제	22	38	11	14

목차

- I. 인증제 연혁
- Ⅱ. 인증제 현황 및 개요
- Ⅲ. 인증제 발전 방향

인증제 현황 2021.02

인중의

- _ 인증 승인 (2013-2020) : 227 명
- _ 인증 만료 및 유고 : 10 명
- _ 2021년 2월 현재 인증의 : 217 명
- 인증기관
- _ 인증 승인 (2013-2020) : 82 개소
- _ 인증 만료 및 기관 폐쇄 : 6 개소
- _ 2021년 2월 현재 인증기관 : 76 개소

인증제 목적

KoNES

<제1회 인증제 공고문 발췌>

- 뇌혈판내수술인증제는 뇌혈판내수술을 시행하는 의료인의 질적 표준을 수립
- 궁극적으로 환자의 건강 및 안전 뿐 만 아니라
- 수술자가 근무하는 뇌혈관내수술실/뇌혈관조영실의 환경, 즉, 시설장비 및 인력 등의 필수적인 근무여건을 개선하는 것을 목적

인증제 평가 항목 _ 인증의 지원 자격

• 인중의 _ 수련프로그램 수련의

- _ 대한민국 법정전문과목 전문의 자격을 취득한 후
- _ 뇌졸중시술 및 뇌혈관내치료를 시행하는 전문의가 상근하는 병원에서 해당 의료기관이 지정한 . 수민프로그램에 따라 뇌졸중시술 및 뇌혈관내치료에 대한 수린을 1년 이상 받은 자
- 인증의 _ 단독 시술의
- _ 대한민국 법정전문과목 전문의 자격을 취득한 후
- _ 수련프로그램을 수료하였거나 이에 준하는 수련을 받은 후, 1년 이상 주수술자로 뇌졸중시술 및 뇌혈관내치료를 단독으로 시행하고 있는 자

인증제 평가 항목 _ 인증의 진료 실적 요건

• 뇌혈관 조영술

- _ 주시술자로 150례 이상의 진단적 뇌혈관 조영술을 시행
- 뇌졸중 시술 및 뇌혈관내 치료
- _ 주수술자 또는 제1조수로 뇌졸중시술 및 뇌혈관내치료를 80례 이상의 증례를 시행
- _ 80례 중 최소 40례 이상은 다음의 수술이 포함
 - 뇌동맥류 색전술
 - 뇌혈관기형(뇌동정택기형 및 동정택투) 색전술
 - 두개강내의 혈관성형술 및 스텐트 설치술
 - 동맥내 색전용해술 및 색전제거술

인증제 평가 항목 _ 인증의 학술 활동 요건

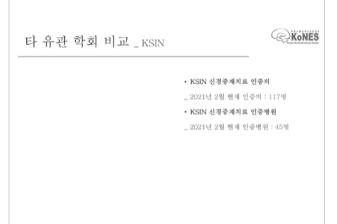
• 연수 평점

- _ 대한뇌혈관내치료의학회가 인정하는 연수강좌 또는 학술대회에 참가하여 '인중제 평점 인정 규정' 에 따라 10점 이상의 연수평점을 이수
- 논문 및 학술 발표 (아래 내용중 1개 이상 충족)
- _ JCEN 또는 타 학술지에 뇌졸중시술 및 뇌혈관내치료에 관련된 내용으로 1편 이상의 논문을 발표
- _ 대한뇌혈관내치료의학회가 인정하는 학술대회에서 뇌졸중시술 및 뇌혈관내치료에 관련된 내용 으로 1권 이상의 연제를 구연 또는 포스터 발표

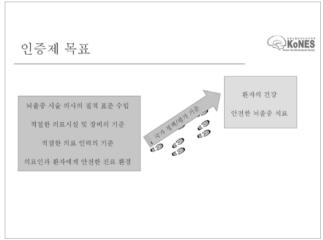
인증제 평가 항목 _ 인증기관 지원 자격

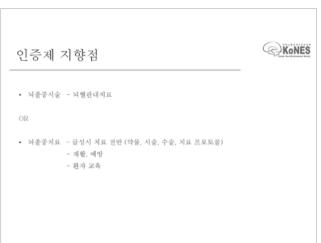
KoNES

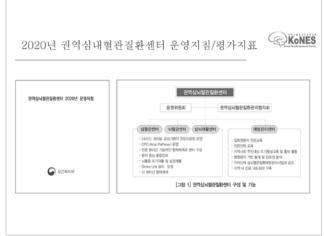
- _ 대한뇌혈관내치료의학회에서 인정한 뇌졸중시술 인증의가 상시 근무
- _ 대한뇌혈관내치료의학회에서 요구하는 진료실적, 시설과 장비 및 인력 등을 갖추어야 한다.

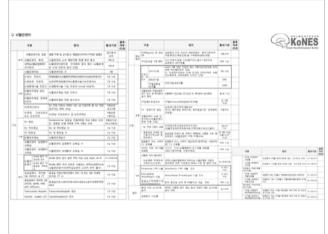

현계	변경 2020.12.28
제 4 조 (인증기관 지정의 요건)	제 4 조 (연중기관 지정의 요건)
현증기관으로 연충 받기 위한 요건은 다음과 같으며.	선증기관으로 선증 받기 위한 요건은 다음과 같으며
연중관리위인회는 경요에 따라 신청 기관에 대한 현장조사를 심사함	연중관리위원회는 정요에 따라 신청 기관에 대한 현장조사를 심시험
수 있다.	수 있다. 산제
1. 선생기관으로 지정 받을 수 있는 애로기관은 상담종합병원 혹은	
인공위원회에서 인경한 중합병원이어야 한다. 태당 기관은	<u> शक्तासम्बद्ध एउट उक्तासम्बद्ध वर्ग वर्ग वर्ग र</u>
대한되열관내지표의학회에서 인정한 처음증시술 인증의(이학	대한되렴관내지료의학회에서 인정한 뇌존중시술 언중의(이의
'연증의)가 상시 근무하여야 하여 대한의원관대치료의학회에서	'연중의)가 장시 근무하여야 하며 대한되럴란대치료의학회에서
요구하는 진료성적, 시설과 장비 및 인력 등은 갖추여야 한다.	요구하는 선료실적, 시설과 장에 및 인력 등을 갖추어야 된다.

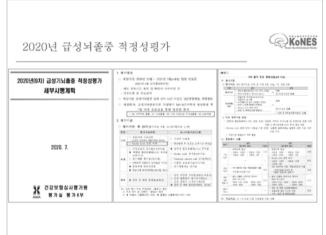
인증제 평가 항목 _ 인증기관 시설/인력/실적 요건

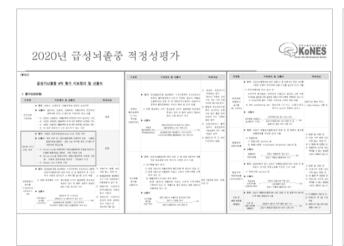


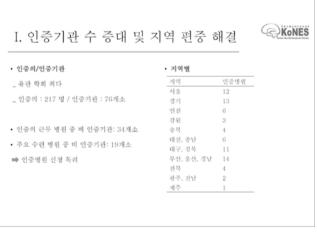

- 인증기관 시설 및 장비
- _ 1개소 이상의 혈관조영실 및 1개 이상의 혈관조영장비가 설치
- _ 뇌혈관질환 개두술이 가능한 수술실 및 뇌혈관질환 환자를 치료할 수 있는 중환자실
- _ 1개 이상의 CT/MRI 보유
- 인증기관 인력
- _ 인증의 자격을 갖춘 전문의가 1명 이상 상기 근무
- _ 뇌혈관질환 개두술이 가능한 신경외과 전문의가 1명 이상 상기 근무
- _ 1개소의 혈관조영실 당, 혈관조영실 전담 방사선사 1명 이상, 간호사가 1명 이상 상시 근무
- 인증기관 진료실적
- _ 연간 40레 이상의 뇌졸중시술 및 뇌혈관내치료를 시행











I. 인증기관 수 증대 및 지역 편중 해결

인증기관

뇌현과질화 정문별의 또는 이에 주하는 별위의 인증기과 신창 동리

실시할 수 있다.

- 이증기과으로 지정 방문 수 있는 의료기과은 상급증한병의 1 안하거관으로 시청 방울 수 있는 의료기관은 상급증합병원 혹은 인증위원회에서 인정한 증합병원이어야 한다. 매당 기관은 대한뇌혈관내지료의학회에서 인정한 뇌물증시술 인종의(이라 '민중의)가 상시 근무하여야 하며 대한뇌혈관내치료의학회에서 요구하는 진료실적, 시설과 장비 및 인력 등을 갖추어야 한다.
- 체 4 조 (연용기관 지정의 요간)

 제 4 조 (연용기관 지정의 요간)

 인증 기관으로 연증 받기 위한 요건은 다음과 같으며, 인증기관으로 연증 받기 위한 요건은 다음과 같으며, 인증관리위원회는 필요에 따라 신청 기관에 대한 현정조사를 성시함
 - 인증기과으로 지점 받음 수 있는 의료기과은 사극조합병의 호 인증위원회에서 인정한 중합병원이어와 한다. 해당 기관은 (삭제)대한뇌혈관내치료의학회에서 인정한 뇌출중시술 인 중 의 (이 하 '인 중 의) 가 상 시 근 무 하 여 야 하 며 대한뇌혈관내치료의학회에서 요구하는 진료실적, 시설과 장비 및 인력 등을 갖추어야 한다.

II. 평가 항목 개선 - 시술 항목 조정

- _ 150례 이상의 뇌혈관조영술
- _ 80레 이상의 뇌졸중시술/뇌혈관내치료
- (40례 이상은 뇌통력류 색권술, 뇌혈관기형 색권술, 무개강대의 혈관성행술 및 스탠트 설치술, 등력대 색권용해술 및 색권제거술)
- _ 연간 40례 이상의 뇌졸증시술/뇌혈관내치료
- _ 재인증은 5년간 연간 평균 40례
- ⇒ 1) 연간 시술 증례 수 상향
 - 2) 40례 중 뇌동맥류 색정승.

동맥내 색전제거술의 최소 증례 건수 지정

III. 평가 항목 개선 - 치료 대상 (뇌출형) 질환 규정

KoNES

뇌졸중

- _ 국가 기관의 기준은 지나치게 뇌경색 위주
- _ 뇌출혈 치료의 중요성에 대한 인식 개선
- : 뇌지주막하충형 / 뇌동맥류
- : 뇌내출혈에 대한 개두술

인증기관

- _ 치료 대상 질환의 규정 없음
- ➡ 1) 질병코드 규정 (160, 161, 162, 163, 165, 166, 167)
 - 2) 뇌출혈, 뇌경색의 질환 구분 뇌출혈 치료 최소 증례 수 규정
 - 3) 뇌혈관질환 개두술 가능 신경외과 전문의 뇌혈관질환 개두술 증례 수 지정

IV. 평가 방법 개선 -정수제

• 현재 평가 방법

- _ 4개 항목, 14개 세부 지표에 대한 pass or fail
- _ 세부 지표별로 점수화
- ex) 조영술 중에 수, 혈관내치트 중에 수, AngioMachine 대수 (뇌형관내지로 전용). CT/MR 대수, 중환자실 천용병상수. 상근 연중의 수, 원단방사선사,간호사 수 등

59 104

KoNES

V. 인증제 세분화

• 인증의 수련지도 전문의

- _ "뇌졸중시술 인증의 수련지도 전문의"
- _ 인증의 취득 후 일정 기간 경과
- _ 일정기간 뇌졸중시술 증례 수 기준
- _ 근무하는 기관이 인증기관
- ➡ 향후 "수련지도 전문의"에게

수련을 받아야 인증의 지원이 가능하도록

• 인증기관 세분화

- _ 시술 항목/치료질환에 따라
- : 뇌출혈 특화센터 or 급성 뇌경색 특화센터
- _ 뇌졸중시술 인증의 수런 기관
- _ 점수제에 따라
- : 권역, 지역 인증기관
- ⇒ 신중히 접근하여야 (인증기관의 서열화 우리) 지나친 세분화에 따른 인증제 희소성 저하

VI. 교육/수련 강화 - 의료인 환자

- 인중의 수련 및 교육
- _ 연간 이수 평점 강화 (현재 10점)
- _ KoNES 힉회, 연수교육, training course 필수 참여 횟수 규정
- _ KoNES CME 필수 교육 이수
- 전담 방사선사/간호사
- _ 필수 이수 교육
- _ 교육 프로그램 개발 (CME)
- 전담 방사선사/간호사
- _ 환자 대상 교육 프로그램 개발

VII. 진료 환경/안전 개선

• 안지오 기계

- 의료인 근무 시간
- _ 진단용 방사선 발생장치 신고증명서 제출
- _ 4주간 평균 근무 시간
- _ 특수의료장비 등록 증명서 제출
- _ 휴일 및 야간 일수
- _ 영상장비 유지보수 및 품질관리 기록서 제출
- _ 연간 응급 시술 건수

• 방사선 관리

- _ 의료인 연간방사선 피폭선량 (TLD) 제출
- _ 방사선 피폭량 초과시 적절 대처 여부

맺음말

- KoNES 인중제
- _ 최초/최다/최대/유일
- 다학제/의학회
- 뇌졸중시술 인증제 or 뇌졸중치료 인증제
- 양적 확대 + 질적 내실
- 정책/교육/학술/연구/인증
- _ 모든 역량 집중

많은 관심과 조언 부탁드립니다.

환자의 건강 / 안전한 뇌졸중 치료가 궁극적 목적

KoNES 뇌혈관센터 구성안

신승훈

차의과학대 분당차병원 신경외과

최근 코로나-19 사태 이후로 공공의료의 중요성이 더욱 더 대두되고 있는 상황입니다. 특히 공공의료의 한 축이 되는 필수보건의료 분야에 대한 국가의 관심이 높아지면서, 정부는 2017년 제정된 "심뇌혈관질환의 예방 및 관리에 관한 법률의 제정 및 시행", 공공보건의료 발전 종합대책('18.10.), 지역의료 강화대책('19,11.)을 통해 지역 간의료격차 해소 및 필수의료 서비스의 지역균형발전을 도모하기 위한 전달 체계 확립 필요성을 강조하고 있는 상황입니다.

그간 신경외과 의사들의 국가정책에 대한 관심도는 매우 낮았고, 그에 따른 일정 부분의 피해도 있는 것이 사실입니다. 이에 현재 뇌혈관질환에 대한 국가정책의 흐름 및 현 상태를 되돌아 보고, 신경외과 의사, 특히 뇌혈관질환의 큰 축을 담당하고 있는 대한뇌혈관내치료의학회의 뇌혈관센터 구성안을 살펴봄으로써 국가뇌혈관질환 정책에 이바지하고자 합니다.

2021 대한뇌혈관내 치료의학회 춘계보수교육

Session II. Endovascular treatment of dural AVF

좌장: 신용삼 (가톨릭대), 하성곤 (고려대)

Dural AVF of the cavernous sinus

권순찬 (울산대)

Dural AVF of transverse-sigmoid sinus, tentorial, clival, etc

이창영 (계명대)

Spinal AVF

강현승 (서울대)

Endovascular Treatment for Dural AVF of the Cavernous Sinus

권순찬

울산대병원 신경외과

Endovascular treatment is the first-line treatment modality for dural arteriovenous shunts (DAVSs) with the low complication rate and the favorable long-term outcome. With advancements of endovascular techniques and materials, numerous routes of access are available. Endovascular strategies must be carefully tailored to the individual patient The approach to an individual DAVSs is dictated by a variety of factors including operator's preference for a specific embolic agent, angio-architecture of the fistula, clinical symptoms, and routes of access available.

Endovascular treatment strategies for dural AVF of the cavernous sinus (CS) can be divided into trans-arterial and trans-veous approach. Generally trans-arterial embolization alone has limited effectiveness, more often palliative or preparative treatment before more definite therapy. But, with the availability of Onyx as new highly penetrable embolic agent, there has been a resurgence of interest in trans-arterial approaches. Under appropriate circumstances, trans-venous embolization is highly effective to achieve curative obliteration of high-risk DAVSs.

I would like to review endovascular approaches for DAVSs of CS by Topology, and share our limited experiences during the last 5 years.

Endovascular treatment of dural arteriovenous fistula: dural AVF of the transverse-sigmoid, tentorial, clival, etc.

이창영

계명대 동산병원 신경외과

Currently, treatments for dAVFs include surgical resection, endovascular treatment, stereotactic radiosurgery or a combination of these treatment. Among them, endovascular therapy is generally the first-line treatment for dAVF. The mainstay for endovascular treatment involves embolization of the fistulous connection and its venous components. Either a transarterial, transvenous, or combined accesses are currently being used with their respective pros and cons. The selection of treatment approach depends on the angioarchitecture of the dAVF, the location, the direction of venous flow. The author presents personal experience in endovascular treatment of various dAVFs and reviews the literature focusing on technical and safety aspects of the procedure

Spinal AVF

강현승

서울대병원 신경외과

Spinal DAVF: **Conceptual Understanding**

강현승

서울대학교병원 서울의대 신경외과

Spinal DAVF: Conceptual Understanding

- Spinal DAVF homologs
- · Spinal DAVF in general
- Spinal DAVF patho-anatomy
- Myth of Foix-Alajouanine syndrome
- · Aminoff-Logue disability scale
- · Spinal DAVF treatment outcome: Curable Cause of Paraplegia

Dural arteriovenous shunts: a new classification of craniospinal epidural venous anatomical bases

- · Ventral epidural group (n=150): a female predominance, more benign clinical presentations, lower rate of cortical and spinal venous reflux, and no cortical and spinal venous reflux without restriction of the venous outflow.
- Dorsal epidural group (n=67): a lower mean age and a higher rate of multiplicity.
- Lateral epidural group (n=63): presented later in life with a male predominance, more aggressive clinical presentations, and cortical and spinal venous reflux without evidence of venous outflow restriction.

Pierre Lasjaunias 2008 Stroke

Spinal dural arteriovenous fistulas: A congestive myelopathy...

- Spinal dural arteriovenous fistula is a rare and enigmatic disease entity.
 - The clinical features and structural changes have been recognized since 1926
 The pathophysiology and the essentials of treatment, since 1974.
 Up to the present day it is unknown why these fistulas develop.
- The fistula between a radicular artery and the corresponding radicular vein within the dural **root sleeve** leads to congestion of the venous outflow of the spinal cord and eventually ischaemia.
- Patients, who are mostly middle-aged men, develop a progressive myelopathy, which at the early stages of the disease often mimics a polyradiculopathy or anterior horn cell disorder.
- By the time involvement of upper motoneurons or sacral segments makes the diagnosis of SDAVF inescapable, patients suffer from considerable neurological deficits.

2006 Brain

Spinal dural arteriovenous fistulas: A congestive myelopathy...

- · The diagnosis relies on MRI.
 - swelling of the spinal cord: a centrally located hyperintense signal on T2WI
 - enlarged and tortuous veins: hypointense 'flow void' phenomena dorsal to the cord
 Catheter angiography to determine the exact location of the figure and the angion.
 - Catheter angiography, to determine the exact location of the fistula and the angioarchitecture, on which the mode of treatment depends.
- If the arterial feeder of the fistula is a tributary of the anterior spinal artery, embolization is not possible.
- After embolization recanalization may occur, but this is rarely seen after filling of the draining vein with glue.
- · Alternatively, operation is a safe and permanent mode of treatment.

006 Brain

Spinal dural arteriovenous fistulas: A congestive myelopathy...

- · No prognostic factors have been reliably established.
- Muscle strength and gait disturbances respond better to treatment than pain and symptoms related to damage of sacral segments.
- In any middle aged male patient with ascending motor or sensory deficits in the legs, SDAVF should be considered in order to prevent irreversible handicap.

2006 Brain

Spinal DAVF: Where is the shunt?

SpDAVF: Microangiographic Study

- In all of the lesions the artery split into daughter vessels that coalesced
 one to three times to form a skein of arterial loops in the dura that
 invariably emptied into a medullary vein without an intervening
 capillary plexus.
- Several medium-to-small collateral vessels arising from adjacent intercostal or lumbar arteries were commonly present in the dura and converged at the site of the AVF to join a single medullary vein.
- These results show that spinal dural AVMs are direct AVFs that link the dural branch of the radiculo-medullary-dural artery with the intradural medullary vein.

1996 J Neurosurg

Legacy and current understanding of the often-misunderstood Foix-Alajouanine syndrome

- The traditional understanding of this clinical syndrome is as a progressive spinal cord venous thrombosis related to a spinal vascular lesion, resulting in necrotic myelopathy. However, spinal venous thrombosis is extremely rare and not a feature of any common spinal vascular syndrome.
- A translation and review of the original 42-page French report revealed 2 young men who had presented with progressive and unrelenting myelopathy ultimately leading to their deaths.
- Pathological analysis demonstrated endomesovasculitis of unknown origin, including vessel wall thickening without evidence of luminal narrowing, obliteration of cord vessels, or thrombosis.
- · Foix and Alajouanine also excluded the presence of intramedullary AVM.

2009 J Neurosu

Legacy and current understanding of the often-misunderstood Foix-Alajouanine syndrome

- At the time, DAVFs had not been described, and therefore this type of lesion was not specifically sought.
- In retrospect, it seems possible that both patients had progressive myelopathy due to Type I DAVFs.
- In the decades since that original report, numerous authors have included spinal cord venous thrombosis as a central feature of Foix-Alajouanine syndrome.
- The inclusion of thrombosis in the clinical picture of this syndrome is not only incorrect but may leave one with the impression of therapeutic futility, thus possibly preventing successful surgical or endovascular therapy.

2009 J Neurosurg

Legacy and current understanding of the often-misunderstood Foix-Alajouanine syndrome

- · Summary of Cases
 - Case 1 (M29), Case 2 (M27)
 Pathological Findings
- Extensive pathological analysis in both cases revealed myelitis and spinal Extensive pathological analysis in both cases revealed myelitis and spinal cord necrosis, which were most prominent at the level of the lumbosacral prominence. The spinal cord abnormalities primarily involved the gray matter but also included the white matter. These findings progressively diminished in a rostral direction and disappeared in the region of the midthoracic cord. Extensive hypertrophy of the intradural vessels predominantly involved veins on the surface of the cord as well as both extra- and intramedullary veins, and to a lesser extent some arteries. Histological analysis of the affected vessels showed "endo-meso-vasculitis with necrotizing tendencies" and considerable hypertrophy of the media. The vessel lumens were widely patent.

2009 J Neurosurg

Legacy and current understanding of the often-misunderstood Foix-Alajouanine syndrome

- . Thrombosis as a feature of Foix-Alajouanine syndrome is a myth that has been perpetuated most likely because the original report was
- · Foix and Alajouanine excluded the presence of vascular malformations within the cord (page 31). They also stated that **no thrombosis** was identified: "Nous avons enfin que . . . il n'y a pas thrombose dans nos cas" (page 12).

2009 J Neurosurg

TABLE 1: Aminoff-Logue disability scales for gait and micturition

Description	Score
gait	
leg weakness, abnormal stance or gait w/o restriction of local motor activity	1
restricted exercise tolerance	2
need for a cane or some support for walking	3
need for 2 canes or crutches for walking	4
unable to stand, confined to bed or wheelchair	5
micturition	
normal	0
urinary hesitancy, urgency, increased frequency, or altered sensation	1
occasional urinary incontinence or retention	2
total urinary incontinence or persistent retention	3

Natural History of Spinal DAVF

- · No prospective studies of the natural history of untreated SDAVFs. Such studies, difficult to justify; Treatments are simple, safe, and effective.
- To deduce the natural history through retrospective analysis of patients with spinal vascular malformations who were studied before the
- introduction of selective spinal arteriography (and thus before a diagnosis or treatment of SDAVF).
- In 1974 Aminoff and Logue reported on a series of 60 cases with a clinical
- diagnosis of spinal vascular malformations

 1/5, nonambulatory or ambulatory with crutches after 6 months
- · 1/2, severely disabled within 3 years of onset of gait impairment · 91%, restricted in their activities within 3 years of symptom onset
- · General agreement:
 - Myelopathy due to SDAVF is progressive without fistula treatment.

2012 Neurosurg Focus

Brain (1974) 97, 197-210 CLINICAL FEATURES OF SPINAL VASCULAR MALFORMATIONS M. J. AMINOFF AND VALENTINE LOGUE
(From the National Hospital for Nervous Diseases, Maids Vale Hospital, London W9, and
the Institute of Neurology, Queen Square, London WCI) TABLE IX.—DEVELOPMENT OF NEUROLOGICAL DISABILITY (1) Progressive course Gradual onset, steadily progressive course As above, but previous transient neurological incident (other than pain) Gradual onset, progressive course interrupted by acute deterioration 5 Acute onset, steadily progressive course (2) Non-progressive course 7 Acute onset 60

Brain (1974) 97, 211-218 THE PROGNOSIS OF PATIENTS WITH SPINAL VASCULAR MALFORMATIONS

M. J. AMINOFF AND VALENTINE LOGUE
(From the National Hospital for Nervous Diseases, Modds Vale Hospital, London W9, and
the Institute of Neurology, Queen Square, London WCI1

In making this study, we have assumed for practical purposes that the degree of disability provides a useful index of the course of the disease, so we have assessed the degree of disability in our patients on two or more occasions. <u>Disturbances of gait</u> were common, due to weakness and/or loss of balance. We have graded these as (1) onset of leg weakness, abnormal stance or gait, without restriction of locomotory activity; (2) restricted exercise tolerance; (3) requires one stick or some restriction of locomotory activity; (2) restricted exercise tolerance; (3) requires one stick or some support for walking; (4) requires cruches or 2 sticks for walking; (5) unable to stand, confined to bed or wheelchair. Disturbances of micturition have been classified as mild—hesitancy, urgency or frequency; moderate—occasional urinary incontinence or retention; severe—total urinary incontinence or persistent retention. Disordered control of defacation has been similarly classified as mild—constipation; moderate—occasional facal incontinence or severe intractable constipation; severe—facal incontinence.

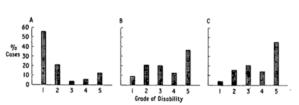


Fig. 1.-Severity of gait disorder. A, Six months after its onset; B, At or within three years of its onset; c, Within the period of follow-up.

Prognosis/Outcome of Spinal DAVF

- Following successful surgical or endovascular treatment of SDAVFs, almost 90% of patients experience stabilization of or improvement in their symptoms.
 55% of patients had symptom improvement after treatment, 34% had no change, and 11% had neurological deterioration.
- When improvement occurs, patients gain 1–2 points on average on the Aminoff-Logue disability scale for ambulation.

 This is largely accounted for by an improvement in **motor** symptoms, the symptoms that tend to respond best to treatment, which occurs in approximately two-thirds of treated patients.
- Sensory symptoms such as numbness, dysesthesia, or burning pain tend to improve less than motor symptoms, but improvement has been reported in 12%improve less than motor symptoms, but improvement has been reported in 147
 43% of patients.

 While most patients at least have stabilization of sensory symptoms, these worsen in 14%-22% of patients, and can be a cause of significant pain.
- Sphincter disturbances tend to recover less well, remaining impaired in up to 73% of those affected and improving in only 15%.

2012 Neurosurg Focus

Outcome Predictors of Spinal DAVF

- · One consistent finding in the literature is that patients with severe preoperative neurological deficits have worse functional outcomes when compared with those with mild or moderate preoperative impairment.
 - Patients with preoperative gait disability scores of 2–3 improve more than those in other grade categories.
 - Only 11% of patients who have severe preoperative disability (defined by a total score of 6–8 on the combined Aminoff-Logue disability scale for gait and micturition) have substantial improvement postoperatively, while 78% of those with mild disability (score 0–3) improve, and 29% of those with moderate disability (score of 4–5) improve.
- · Nevertheless, clinical recovery is possible even for patients with severe deficits, including paraplegia.
- · Treatments should not be withheld from patients who are severely affected, because they still may benefit from surgery.

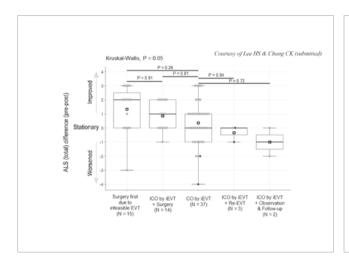
Curable Cause of Paraplegia: Spinal DAVF

- · Of 42 patients with spinal dural arteriovenous fistulae treated in our institution (surgery or endovascular treatment), 6 were paraplegic preoperatively (Grade IV on the McCormick scale and Grade V on the Aminoff scale, Grade 5 of modified Rankin Scale with motor ASIA between 0 and 10 for both lower limbs). Their clinical history revealed that paraplegia appeared progressively within a period of <3
- 3 patients showed almost normal walking (Grade I on the McCormick scale, I on the Aminoff scale, Grade I of modified Rankin Scale) and 3 were able to walk with a cane (Grade II on McCormick, Grade III on Aminoff scale, Grade 2 of modified Rankin Scale).

Outcome Predictors of Spinal DAVF

- · Success of the treatment procedure undoubtedly influences outcomes
 - Complete and permanent fistula obliteration provides the best chance for symptomatic improvement and a favorable outcome.
- · In the past, endovascular treatment has been criticized because of low initial success rates and high fistula recurrence rates (up to 83% with the use of polyvinyl alcohol).
- More recent data indicate a higher success rate and lower recanalization rates with
- the use of **liquid adhesive** embolization.

 The initial success rate of embolization was **69%** in 1 recent study and has ranged from 30% to 90% depending on whether penetration of the proximal vein is required.
- · Recanalization—a complication more often seen in endovascular therapy
- compared with microsurgical clipping—is another consideration.


 In 1 recent study of 26 patients treated endovascularly, 19% had recanalization and all had accompanying worsening neurological symptoms.

2012 Neurosurg Focus

SpDAVF: SNUH Experiences (2004 to 2019)

- · Of the 71 patients, 56 underwent initial EVT. Complete occlusion was achieved by initial EVT in 37 of 56 patients (66.1%).
 - ASpA/PSpA (n=6); Too small/tortuous feeder (n=9)
 - Multiple feeders, more frequently observed in patients with incomplete occlusion than complete occlusion after initial EVT (73.7% vs. 27%, p< 0.001).
- The remaining 15 patients underwent surgery as initial treatment.
- Among 19 patients with incomplete occlusion upon initial EVT, 14 underwent additional surgery, 13 of whom (92.9%) obtained improved or stationary functional outcomes.
- · Recurrence was observed in 8 of 37 (21.6%) patients with complete occlusion upon initial EVT.

Courtesy of Lee HS & Chung CK (subt

If EVT is the first-line choice...

- If endovascular treatment is the first-line choice, it should be planned in combination with preparation for open microsurgery in the same institution for patients in whom embolization fails.
- Because angiographic evaluations alone cannot predict the risk for recanalization, the embolization cast position must be evaluated by CT immediately after the intervention to determine whether it is in the intradural proximal radiculomedullary vein as well as within the dura mater.
- If the embolic material does not penetrate the intradural proximal vein, surgical treatment should be performed as soon as possible to try and block an AVF permanently before the progression of incurable neurological deficits.

2015 J Neurosurg

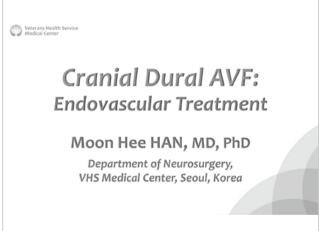
2021 대한뇌혈관내 치료의학회 춘계보수교육

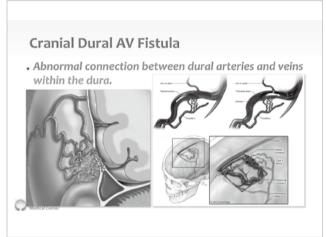
Session III. "Meet-the-Expert" session

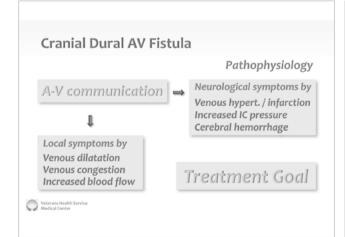
좌장: 백민우 (뉴고려병원), 김범태 (순천향대)

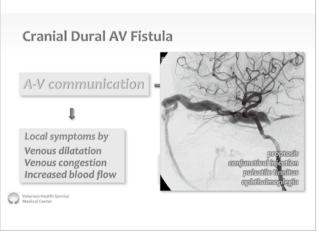
Endovascular treatment of dural AVF

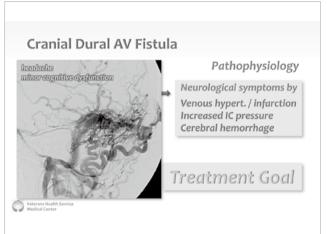
한문희 (중앙보훈병원)

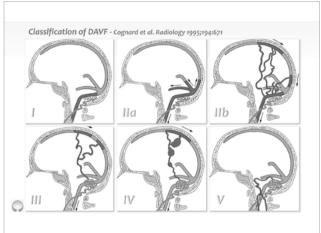

Naoya Kuwayama (University of Toyama, Japan) Endovascular treatment of dural AVF

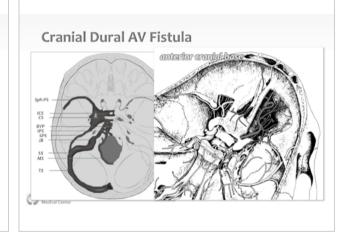


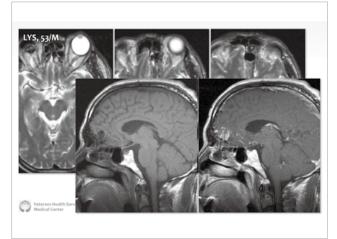

Endovascular treatment of dural AVF

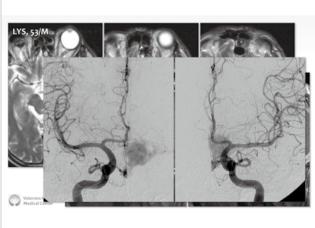

한문희

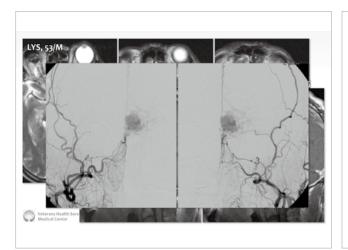

중앙보훈병원 영상의학과

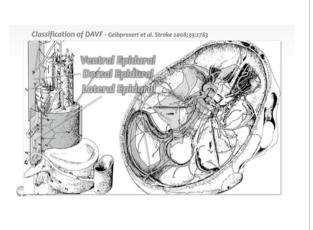


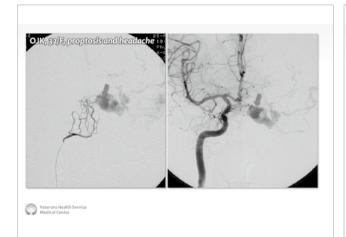


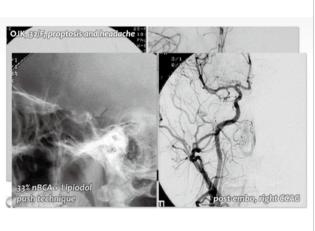

Cranial Dural AV Fistula


Locations


- Cavernous sinus most common
- . Transverse and sigmoid sinuses
- Superior sagittal sinus and Falx cerebri
- Straight sinus and Torcula herophili
- Anterior and posterior cranial bases
- · Marginal s., SPS, condylar v., convexity

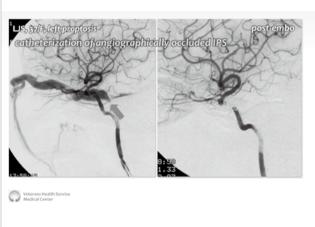


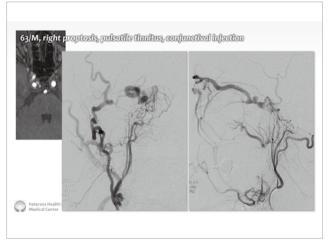

Cranial Dural AV Fistula

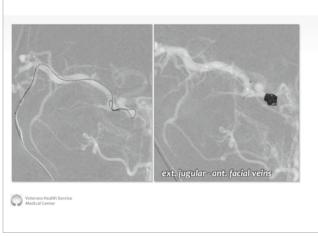

Endovascular Treatment

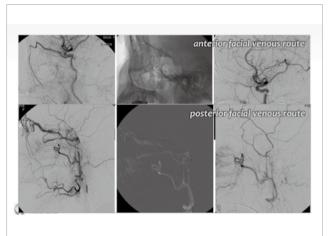
- Transarterial routes
 - Liquids (co-EVA, n-BCA), Particles
- Transvenous routes
 - Coils (detachable, pushable), Liquids

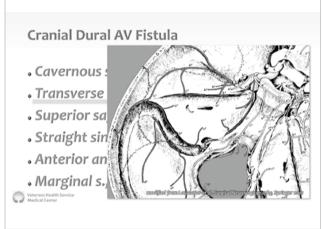
Cavernous Dural AV Fistula Arterial Feeders of Cavernous Sinus Middle meningeal A. Sphenopalatine A. Acc. Meningeal A. Inferolateral trunk Mening. hypophy. T. Asc. Pharyngeal A. Veterans Health Service Medical Center

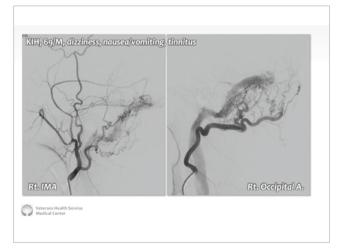

Cavernous Dural AV Fistula

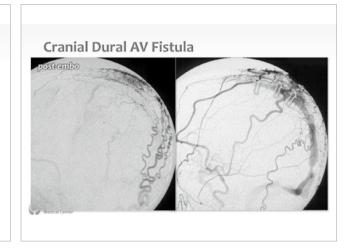

Venous Endovascular Routes

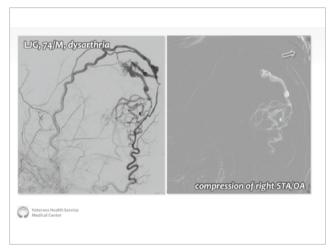

- Inferior petrosal sinus
 - ipsilateral or contralateral
- Superior ophthalmic vein
 - direct or trans-facial
- Veterans Health Service Medical Center

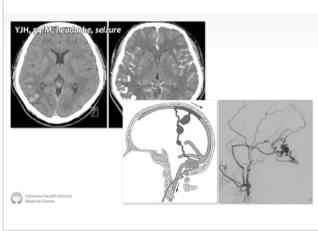


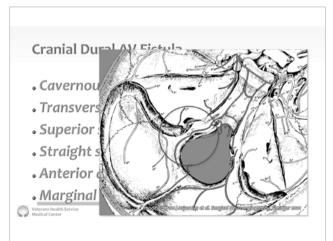


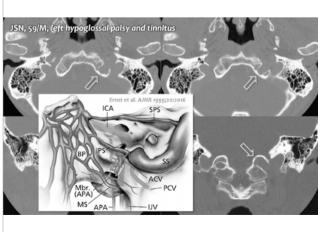





Cranial Dural AV Fistula

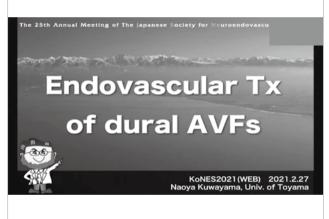

Target Points of Occlusion

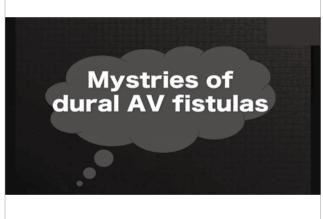

- . Location and extent of A-V connection
- Cerebral circulation and ven. hypertension
- Major clinical problems



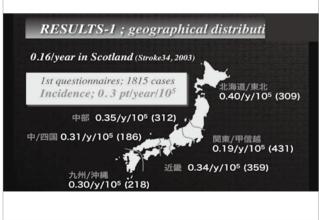


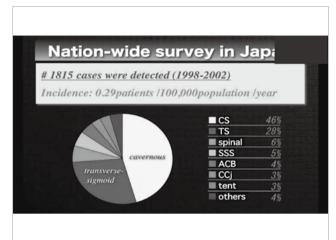


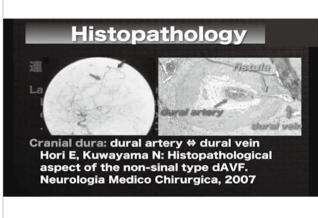


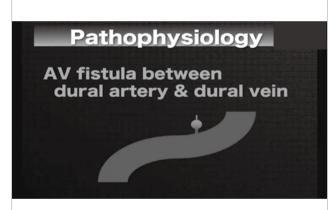


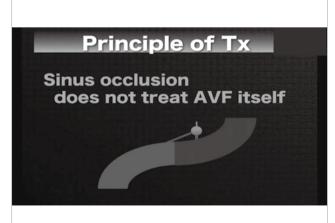
Endovascular treatment of dural AVF

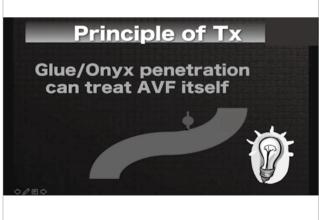

Naoya Kuwayama

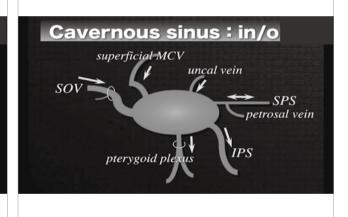

University of Toyama, Japan



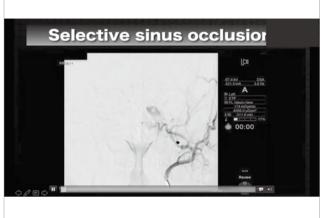


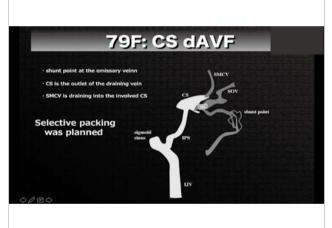




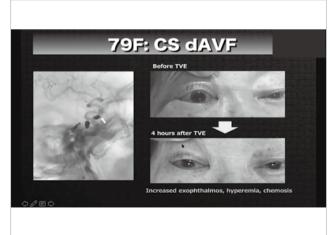


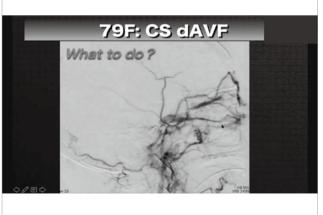
Cavernous sinus

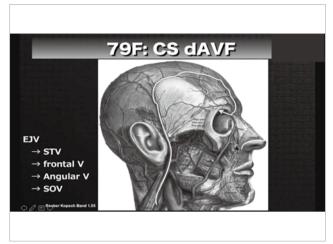

- Consensus: TVE standard
- ⇒ Outflow occlusion
- ⇒ Selective shunt occlusion
- ⇒ Superselective occlusion
- Onyx is not indicated

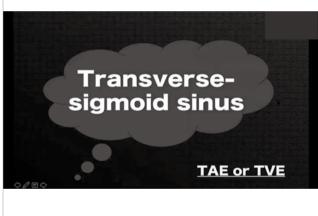


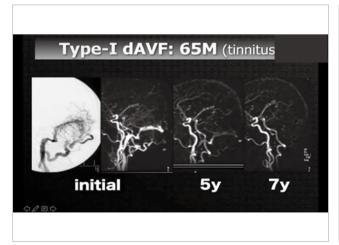
Superficia. uncal vein anterior pontomesencephalic petrosal vein

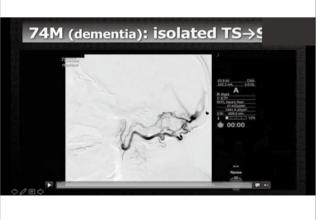

Cavernous sinus Consensus: TVE standard Outflow occlusion Selective shunt occlusion Superselective occlusion Onyx is not indicated



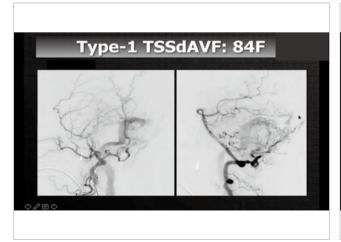


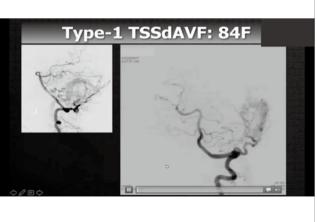


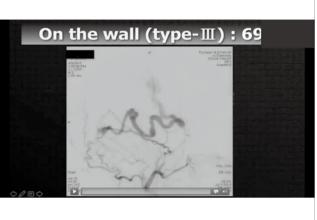


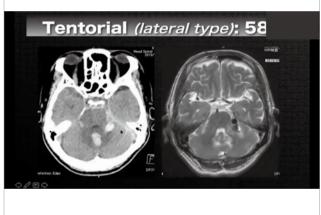


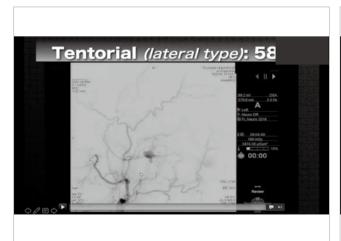


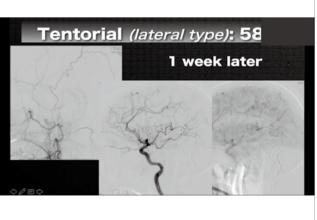


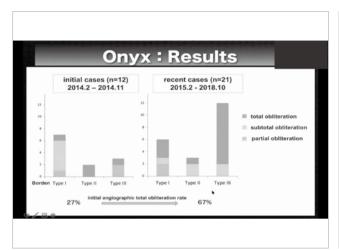


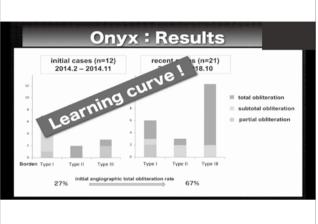


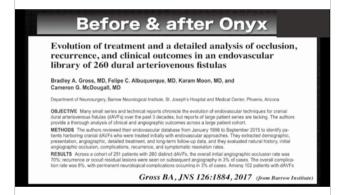


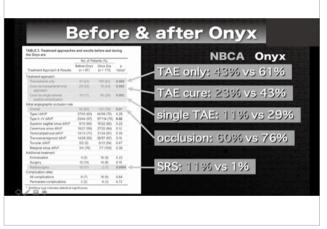


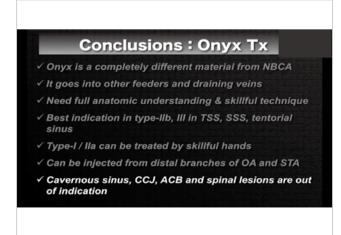












2021 대한뇌혈관내 치료의학회 춘계보수교육

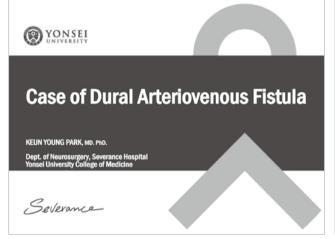
Session V. Interesting or complicated cases presentation of dural AVF

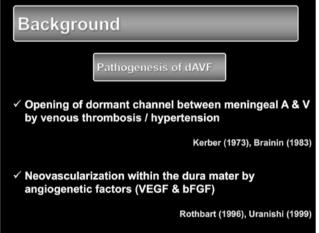
좌장: 권오기 (서울대), 허준 (명지성모병원)

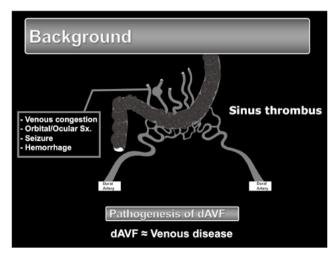
Case Presentation 1 박근영 (연세대)

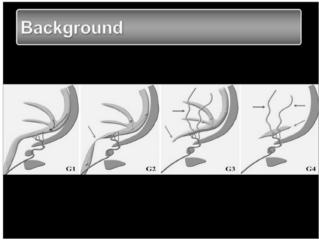
Case Presentation 2 임종국 (제주대)

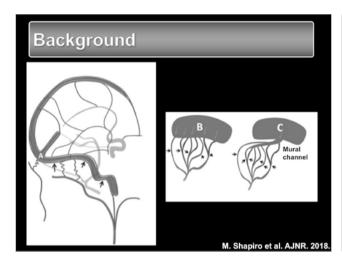
Case Presentation 3 고정호 (단국대)

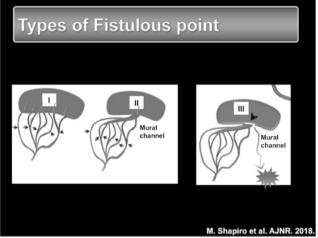

Case Presentation 4 신희섭 (경희대)



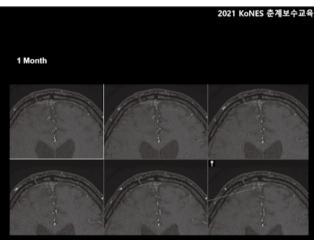

Case of Dural Arteriovenous Fistula

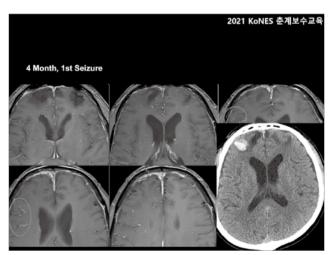

박근영

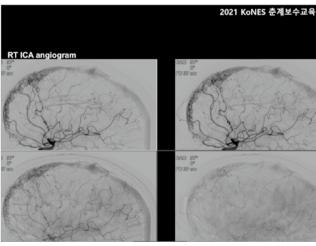

연세대 세브란스병원 신경외과

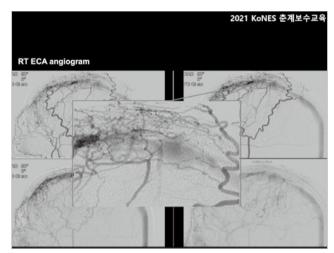


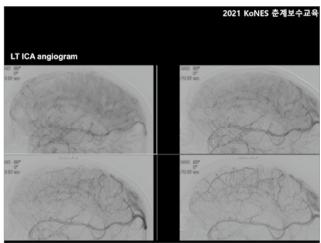


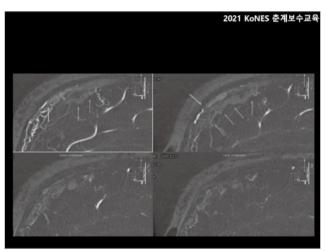


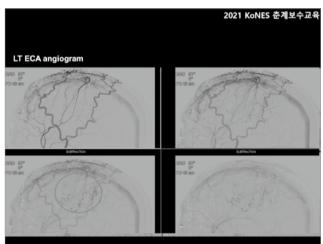


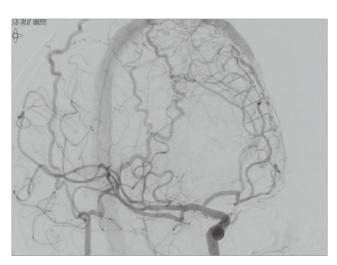


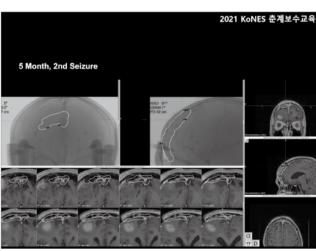


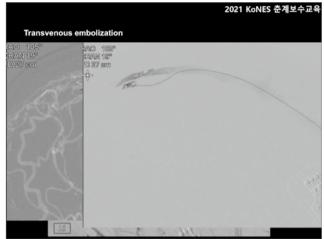


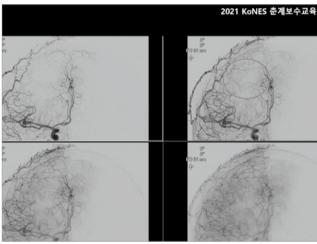


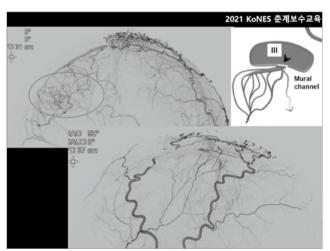


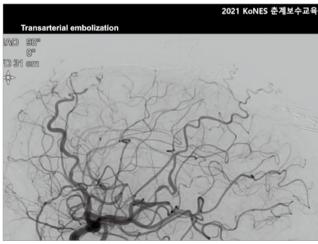












2021 KoNES 춘계보수교육

Conclusions

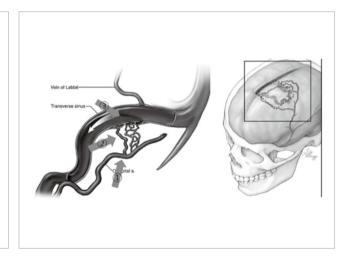
- Understanding of pathogenesis of dAVF
- Understanding of anatomy of dAVF
- Fistulous point and Mural channel

Multiple fistula points in cavernous sinus dural arteriovenous fistula

임종국

제주대병원 신경외과

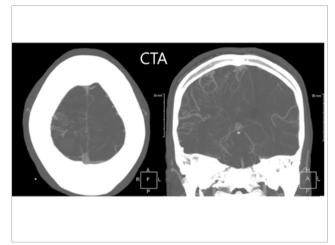
The patient visited the neurology department of our hospital with typical cavernous sinus (CS) dural arteriovenous fistula (dAVF) symptoms. Routine transfermoral cerebral angiography (TFCA) was performed and three major fistula points were presented. This CS dAVF occurred around the cavernous sinus, resulting in bilateral lesions, and the posterior compartment of CS is the main drainage sinus. Symptoms appear only on the left side with a drainage pattern. First of all, I planned a transvenous embolization through inferior petroleum sinus (IPS), Navigating through IPS was not difficult, but several trials with microwires found a main fistula point. The microcatheter reached the main lesion and a detachable coil was placed in the main hole of the lesion. Follow-up images showed almost occlusion on right external carotid angiography (ECAG). The left ECAG showed another unexpected lesion on top of the problem I was thinking of. That point was unreachable with the microcatheter and microwire, and the posterior compartment of the CS was filled with pushable coils. Final angiography showed complete occlusion of CS dAVF. The patient was satisfied with the improvement in symptoms. Paradoxical exacerbation was seen 2 days after the procedure, but all symptoms improved 1 month later. IPS was a good therapeutic route for CS dAVF, and the angioanatomical features were thoroughly evaluated on magnetic resonance imaging and TFCA. It is too difficult to return to the initial lesion after winding the coil. We need to consider the pattern/pattern of the draining vein and the caliber/path of the feeding artery.

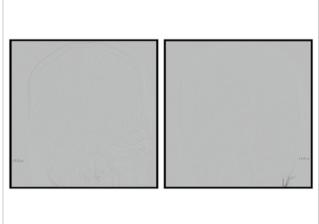

My experiences of PHIL In Dural AVFs

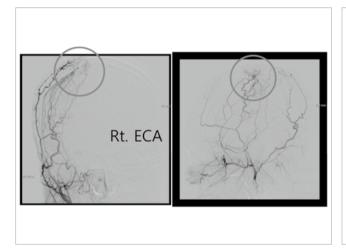
고정호

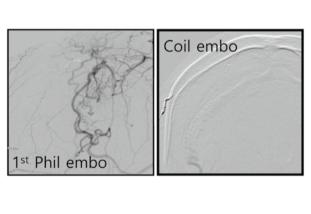
단국대병원 신경외과

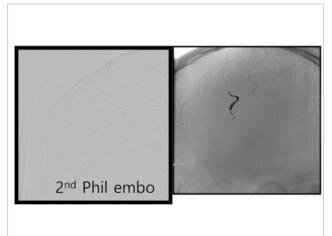
My experiences of PHIL In Dural AVFs

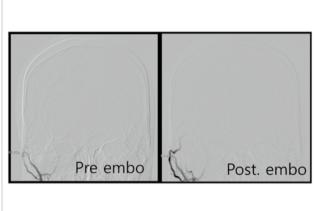

단국대학교 고정호

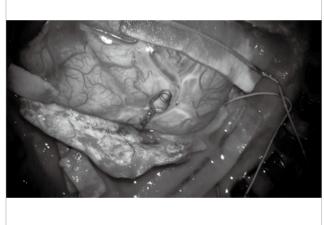


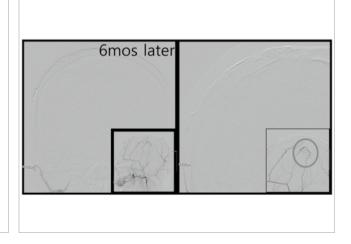

Several concerns about embolization using Phil for DAVF

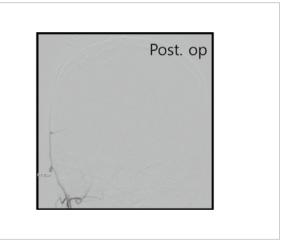

- 1. Venous obstruction due to poor control
- 2. Poor visualization
- 3. Poor penetration via AVF network
- 4. Attachment of a microcatheter on a feeder



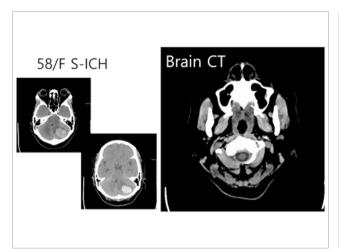


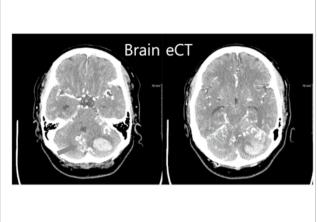


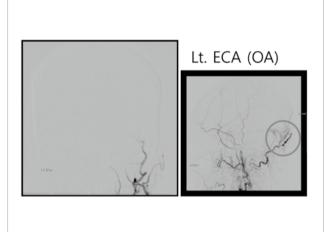


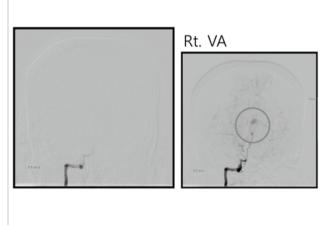




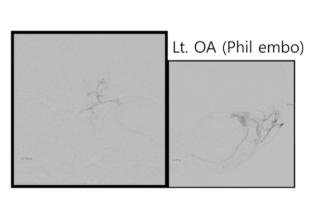


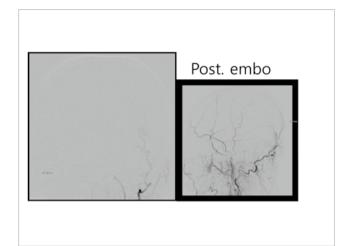


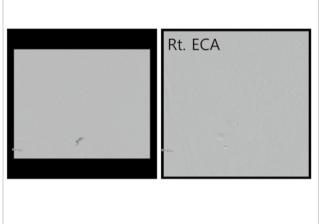


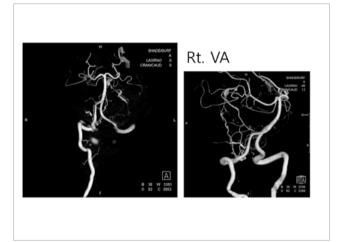


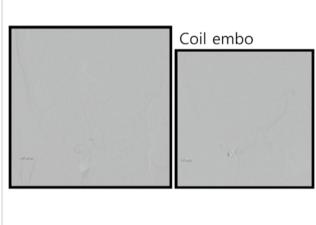
In my experience

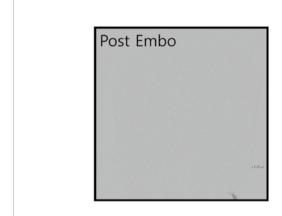


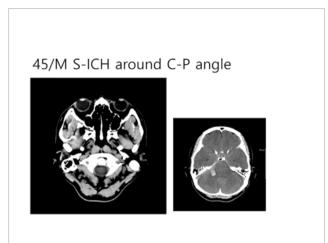


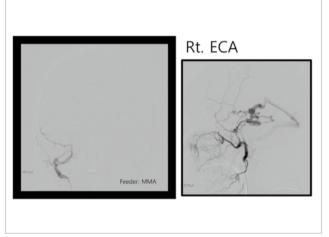


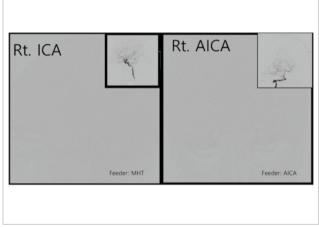


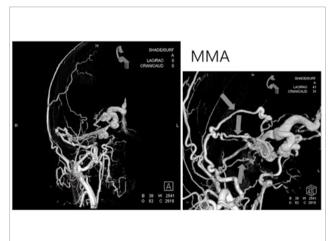


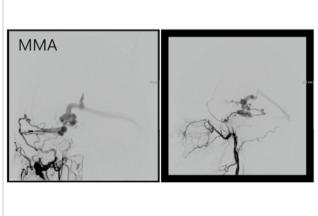


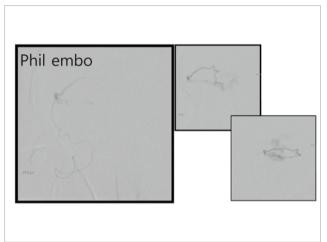




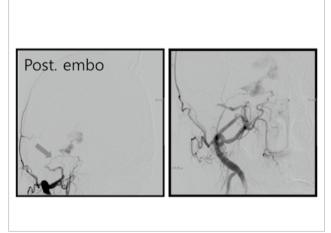

In my experience

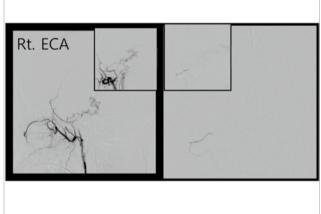

- Phil Injection(DMSO) into the scalp vessels make a severe pain.
- So general anesthesia is needed.
- It is difficult to penetrate through skull.

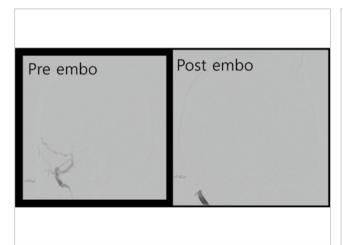


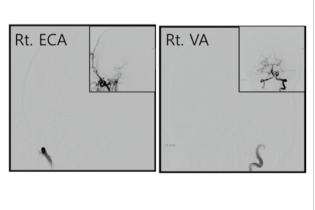












In my experience

DMSO allergy

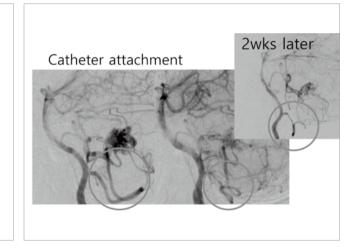
000Research research 111 time or quies 21

CERTIFICATION OF THE CONTROL OF T

Interiord. Dimethyl sulficiolde (DMSO) has been used for medical seatment and as a pharmacological apert in humans serice the 1906s. Soldy, DMSO as used mostly for opposessment of stem cells, therefore if interitating systiss, and as a presidentialing vehicle for versions drugs. MSO where seatments here the described in middles in the use of 20 MSO, where seatments here there described in middles in the use of 20 MSO, where seatments here the described in middles in the use of 20 MSO, which were seatment to the seatment of 20 MSO, where the seatment is relation to the use of DMSO. Methods: This systematic review was reported according to the "ESMMA-harms (Petrode Reporting terms for Systematic reviews and DMSO. As the Seatment of Reporting terms for Systematic reviews and DMSO. The systematic reviews was reported according to the "ESMMA-harms (Petrode Reporting terms for Systematic reviews and

all original studies that reported adverse events due to the administration of DMSO, and that had a population of five or more. Results: We included a total of 100 studies. Castrointestinal and skin reactions were the commonst repond adverse reactions to DMSO. Most reactions were transient without need for intervention. A relationship between the disease of DMSO planes and the compression of schemes reactionship

Conclusions: DMSO may cause a variety of adverse reactions that are mostly transient and mild. The dose of DMSO plays an important role in the occurrence of adverse reactions. DMSO seems to be safe to use in small doses.


Patients characteristics

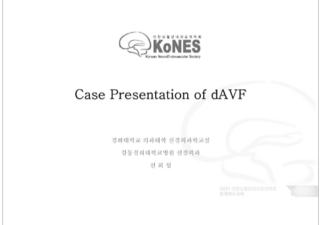
No	나이	성별	Sx	ICH	Feeder(embo)	Other treatment	complication	Outcome
1	25	М	Headache, Lt. motor weakness	0	Rt. MMA(Phil) Rt. STA(Coil) Lt. STA(OP)	Craniotomy And clipping	×	Good
2	58	F	Dizziness Headache	0	Lt. OA (Phil) Rt. VA (Coil)		х	Good
3	45	М	Headache, dizziness	0	Rt. MMA(Phil) Rt. ICA Rt. AICA	Radiosurgery	×	Good

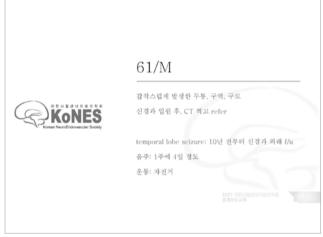
Several concerns about embolization using Phil for DAVF

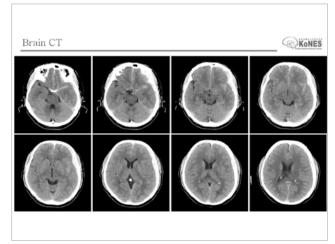
- 1. Venous obstruction due to poor control
- 2. Poor visualization
- 3. Poor penetration via AVF network
- 4. Attachment of a microcatheter on a feeder

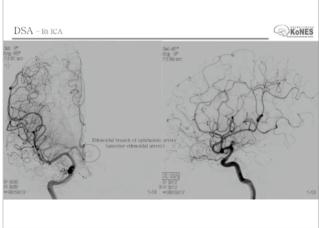
(3)**

DMSO COMPATIBLE MICROCATHETERS

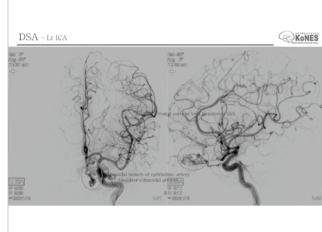

Microcatheter	MicroVention	Medtronic	Balt	Stryker
Detachable Tip Catheter		Apollo™	Sonic	
Dual Lumen Balloon	Scepter™C Scepter™ XC		Eclipse 2L, Copernic 2L	
Wire Directed Catheter	Headway® Headway® DUO	Marathon™ Echelon™ Rebar™ UltraFlow™		Excelsior™ XT-17

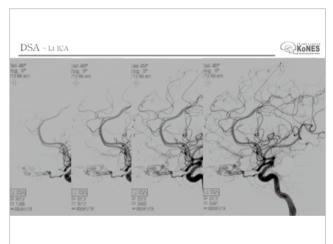

Thanks for your attention

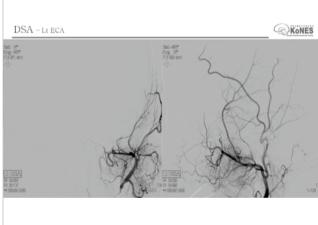

Case Presentation of dAVF

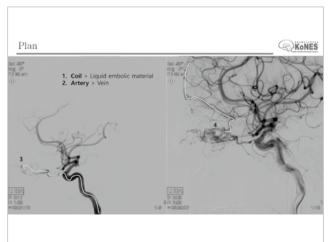

신희섭

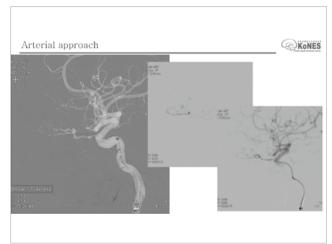
강동경희대병원 신경외과

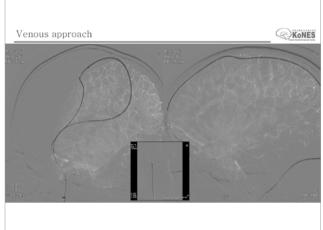


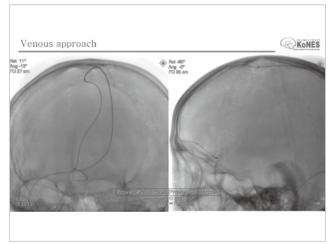


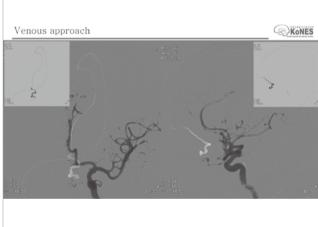


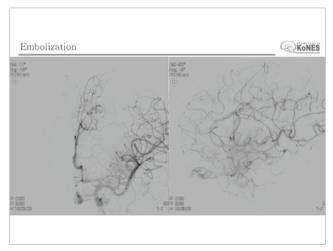




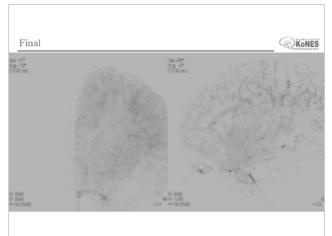


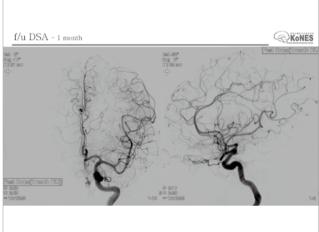












2021 대한뇌혈관내치료의학회 춘계보수교육

인 쇄 2021년 2월 25일

발 행 2021년 2월 27일

발 행 처 대한뇌혈관내치료의학회

회 장 윤석만

총무이사 박석규

수련교육이사 김태곤, 유승훈

주 소 서울시 서초구 서초대로 350 (서초동 동아빌라트 2타운) 407호

제 작 엘에스커뮤니케이션즈

주 소 서울특별시 동대문구 천호대로85길 17 압구정빌딩 6층

TEL) 02) 476-6718

Q-Guard

Topical Hemostatic Dressing / Bleeding Control / Kaolin

큐가드는 체내에 알레르기나 면역 반응을 유발하지 않고 지혈을 촉진시키는 카올린(Kaolin)이 거즈에 특수 코팅되어 광범위한 영역의 출혈을 억제하기 위해 사용하는 지혈용 드레싱입니다

품 목 명 국소지혈용드레싱

제품명 Q-Guard / 큐가드

원 재 료 카올린(Kaolin), 거즈(레이온)

가 격 법정비급여 포장단위 10EA / Box

2 x 2Hemostatic Dressing

4 x 4Hemostatic Dressing

Z-FoldHemostatic Dressing

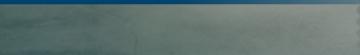
3 x 10 Hemostatic Dressing

Alfoatilin

뇌기능 개선제 알포아티린

(Choline alfoscerate)

연질캡슐, 정제, 리드캡슐 3종의 제형으로 보다 다양한 치료 옵션을 제공합니다.



알포아티린리드캡슐

알포아티린정

※제품의 실제 크기와 다릅니다.

알포아티린®라드캡슐(콜린알포세레이트)

자상당실: 080-024-1188(수신자 요금부당) ※ 보다 자세한 사항은 최신의 제품설명서 전문을 참고하시기 바랍니다.

[변문병통 및 분명] '전 중 플린일포시테이트(P) 400mg [성성) 담황책의 장병형 필름교명정 [호농·호과] - 뇌함한 경손에 의한 2차 중상 및 반성 또는 퇴행성 뇌기질성 정신종 군 : 기억리자하다 작란 의욕 및 자발성자하로 인한 병합감각정해, 의욕 및 자발성 저하. 집중취검소 - 감정 및 행동변회: 정서불안 자극과만성 주위구점스 - 노인성 가성우의 최 경구부마한다. 중성에 따라 작절히 중감한다. [사용성의 주의사항] 1. 급기 1) 이 약 및 이 약의 구성성분에 과민반응 환자 2) 일부 또는 임신하고 있을 가능성이 있는 여성 [자정병법] 기밀용기, 실온(1-30C)보관 [포장단위] 30정(정상PTP-G), 60정(정상PTP-G), 60정(정상PTP-G) [정부문사개정일] 2017.10.10 [제조·판매자] 마유한당병 서울시 동작구 노랑진로 74 / ※보다 자세한 사항은 최신의 제품설명서 전문을 참고하시기 바랍니다.

알포아티린®연질캡슐(콜린알포세레이트)

[원토막통 및 분항] 1합을 중 콜린일포서에이트(아) 400mg (성성) 무부투명의 점조한 역을 넓은 단황색을 딴 타원형의 연절합술제 (효涛-호과) - 뇌질관 결손에 의한 2차 중상 및 병성 또는 퇴행성 뇌기질성 정신중주군 : 기억력자여와 취란, 의욕 및 자발성 저하로 인한 병향감각장에, 의욕 및 자발성 저하, 집중력감소 - 관정 및 행동변화 : 장서불안 자극과만성, 주위모관심 - 노인성 가성우움증 (용합·용향) 골린일포서레이트로서 1회 400 mg을 1일 2 ~ 3회 경구두여한다. 중상에 따라 직접히 중감한다. (사용성의 주의사항) 1. 금기 기 이 약 및 이 약의 구성상분에 과민반중 환자 2 임부 또는 임신하고 있을 가능성이 있는 여성 [자전방법] 기밀공기, 실온(1-30°단보관 [포장단위] 100캡슐(17만A)([청부문사계정일] 2017;1010 [제조의라 판매자] (위순안병 서울시 동작구 노랑진로 74 www.p.fanan.co.kr 소비자상담실: 080-024-1188(수신자 요금부담) ※ 보다 자세한 사항은 최신의 제품설명서 전문을 참고하시기 바랍니다.

microcoil

- Random Complex Shape Technology
- Low Coil Profile 0.009" Primary Wind
- Complete Product Offering

ORDERING INFORMATION

GALAXY G3 Mini Microcoil				
Catalog Number	Secondary Diameter (mm)	Coil Length (cm)		
GLM910010	1	1		
GLM910015	1	1.5		
GLM910020	1	2		
GLM910025	1	2.5		
GLM910030	1	3		
GLM910040	1	4		
GLM915020	1.5	2		
GLM915025	1.5	2.5		
GLM915030	1.5	3		
GLM915040	1.5	4		
GLM920030	2	3		
GLM920040	2	4		
GLM920060	2	6		
GLM925035	2.5	3.5		
GLM925045	2.5	4.5		
GLM925055	2.5	5.5		
GLM930040	3	4		
GLM930060	3	6		

Perclose ProGlide™

Suture-Mediated Closure System

10 MILLION+ REPAIRS[†]

DON'T JUST CLOSE. **REPAIR.** Perchose Glide

[†]January 2020 Finance Report. Data on file at Abbott

*On Nov. 8, 1993, the first (Perclose) patent was filed for the percutaneous suture vascular closure device. The Perclose portfolio includes all percutaneous suture closure devices. Data on file at Abbott.

optima[™] coil system optimal design, optimal detachment

Optima Coil System is manufactured by Balt USA, 29 Parker, Irvine, CA 92618. The Optima Coil System is intended for the endovascular embolization of intracranial aneurysms and other neurovascular abnormalities such as arteriovenous malformations and arteriovenous fistulae. The Optima Coil System is also intended for vascular occlusion of blood vessels within the neurovascular system to permanently obstruct blood flow to an aneurysm or other vascular malformation and for arterial and venous embolizations in the peripheral vasculature. The content of this document, in particular data, information, trademarks and logos are BALT S.A.S and affiliates' sole property. Consequently, all representation and/or reproduction, whether in part or in full, is forbidden and would be considered a violation of BALT S.A.S and affiliates' copyrights and other intellectual proprietary rights © 2018 BALT S.A.S and affiliates all rights reserved. This document with associated pictures are non-contractual and are solely dedicated to healthcare professionals and BALT S.A.S and affiliates' distributors. The products commercialized by BALT S.A.S and affiliates shall exclusively be used in accordance with the package inserts which have been updated and included in the boxes. Optima Coil System is Class III CE marked (DQS CE0297) according to the Medical Device Directive 93/42/EEC Annex II Section 4 since July 2017 (535003 W). (05/2018).

(돼지뇌펩티드)

Cerebroprotein hydrolysaate 10 mL / 20 mL

뉴로리진주 10 mL, 20 mL

[효능・효과] 알츠하이머형 노인성치매, 뇌졸중 후 뇌기능장애, 두개골의 외상(뇌진탕, 뇌좌상, 수술 후 외상) [용법・용량] 일반적으로 하기 환자의 1일 투여용량은 다음과 같다. •알츠하이머형 노인성치매, 뇌졸중 후 뇌기능장애 : 5~20mL • 두개골의 외상(뇌진탕, 뇌좌상, 수술 후 외상) : 10~50mL • 소아 : 1~2mL 투여기간은 매일 투여로 10~20일이나, 통상 계속 투여해도 더 이상 진전이 없을 때까지 투여하며, 투여 횟수를 매일 투여에서 주 2~3회 투여로 변경할 수 있다. 각 치료주기 사이에 치료기간만큼의 휴약기를 갖는다. 단, 투여량, 투여횟수, 투여기간은 연령 및 증상에 따라 적절히 증감할 수 있다. 5mL까지는 근육주사, 10mL까지는 정맥주사하고, 10mL에서 최고 30mL까지는 0.9%생리식염주사액, 링겔액, 5%포도당 주사액, 또는 텍스트란 40에 무균적으로 혼화하여 약 60분간에 걸쳐서 천천히 정맥 주입하며 필요할 경우 심혈관계 작용약 또는 비타민제와 동시투여할 수 있으나 용액에 직접 혼합해서는 안 된다. [이상반응] 1) 과민반응 : 극히 드물게 알레르기 반응(피부반응, 국소혈관반응, 두통, 목의 통증, 사지통증, 발열, 하부요통, 호흡곤란, 오한, 속 유사 증상)이 관찰되었다. 2) 정신신경계 : 드물게 심리적 불안감(공격적, 혼란, 불면증)이 나타날 수 있다. 3) 소화기계 : 드물게 식욕감퇴, 소화불량, 설사, 변비, 구역, 구토 등이 나타날 수 있다. 4) 투여부위 : 피부발적, 가려움증, 작열감이 보고되었다. 5) 기타 : 드물게 과다호흡, 과다호흡긴장증, 근육긴장저하, 피로, 떨림, 우울증, 냉담, 어지러움, 의식의 혼미, 인플루엔자의 증상(예 오한, 기침, 호흡기 감염) 등이 보고되었으며, 대발작과 경련이 단 한건 보고되었다.

